Solveeit Logo

Question

Question: Prove the following expression \[\operatorname{cosec}\theta \left( \sec \theta -1 \right)-\cot \th...

Prove the following expression
cosecθ(secθ1)cotθ(1cosθ)=tanθsinθ\operatorname{cosec}\theta \left( \sec \theta -1 \right)-\cot \theta \left( 1-\cos \theta \right)=\tan \theta -\sin \theta

Explanation

Solution

Hint: First of all, convert the whole expression in LHS in terms of sinθ\sin \theta and cosθ\cos \theta by using cosecx=1sinx\operatorname{cosec}x=\dfrac{1}{\sin x}, secx=1cosx\sec x=\dfrac{1}{\cos x} and cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. Now simplify the expression to get the desired result.

Complete step-by-step solution -
In this question, we have to prove that
cosec(secθ1)cotθ(1cosθ)=tanθsinθ\operatorname{cosec}\left( \sec \theta -1 \right)-\cot \theta \left( 1-\cos \theta \right)=\tan \theta -\sin \theta
Let us take the LHS of the expression given in the question, we get,
E=cosecθ(secθ1)cotθ(1cosθ)E=\operatorname{cosec}\theta \left( \sec \theta -1 \right)-\cot \theta \left( 1-\cos \theta \right)
We know that cosecx=1sinx\operatorname{cosec}x=\dfrac{1}{\sin x}. By using this in the above expression, we get,
E=1sinθ(secθ1)cotθ(1cosθ)E=\dfrac{1}{\sin \theta }\left( \sec \theta -1 \right)-\cot \theta \left( 1-\cos \theta \right)
We know that secx=1cosx\sec x=\dfrac{1}{\cos x}. By using this in the above expression, we get,
E=1sinθ(1cosθ1)cotθ(1cosθ)E=\dfrac{1}{\sin \theta }\left( \dfrac{1}{\cos \theta }-1 \right)-\cot \theta \left( 1-\cos \theta \right)
We also know that cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. By using this in the above expression, we get,
E=1sinθ(1cosθ1)cosθsinθ(1cosθ)E=\dfrac{1}{\sin \theta }\left( \dfrac{1}{\cos \theta }-1 \right)-\dfrac{\cos \theta }{\sin \theta }\left( 1-\cos \theta \right)
By simplifying the above expression, we get,
E=1sinθcosθ1sinθcosθsinθ+cos2θsinθE=\dfrac{1}{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta }+\dfrac{{{\cos }^{2}}\theta }{\sin \theta }
By taking sinθcosθ\sin \theta \cos \theta as LCM and further simplifying the above expression, we get,
E=1cosθcos2θ+cos3θsinθcosθE=\dfrac{1-\cos \theta -{{\cos }^{2}}\theta +{{\cos }^{3}}\theta }{\sin \theta \cos \theta }
We can also write the above expression as
E=1(1cosθ)cos2θ(1cosθ)sinθcosθE=\dfrac{1\left( 1-\cos \theta \right)-{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{\sin \theta \cos \theta }
By taking out (1cosθ)\left( 1-\cos \theta \right) common from the above expression, we get,
E=(1cosθ)(1cos2θ)sinθcosθE=\dfrac{\left( 1-\cos \theta \right)\left( 1-{{\cos }^{2}}\theta \right)}{\sin \theta \cos \theta }
We know that 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x. By using this in the above expression, we get,
E=(1cosθ)(sin2θ)sinθcosθE=\dfrac{\left( 1-\cos \theta \right)\left( {{\sin }^{2}}\theta \right)}{\sin \theta \cos \theta }
By canceling the like term from the above expression, we get,
E=(1cosθ)sinθcosθE=\dfrac{\left( 1-\cos \theta \right)\sin \theta }{\cos \theta }
By taking sinθ\sin \theta inside the bracket, we get,
E=(sinθsinθcosθ)cosθE=\dfrac{\left( \sin \theta -\sin \theta \cos \theta \right)}{\cos \theta }
E=sinθcosθsinθcosθcosθE=\dfrac{\sin \theta }{\cos \theta }-\dfrac{\sin \theta \cos \theta }{\cos \theta }
By canceling the like terms from the above expression, we get,
E=sinθcosθsinθE=\dfrac{\sin \theta }{\cos \theta }-\sin \theta
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x. By using this in the above expression, we get,
E=tanθsinθE=\tan \theta -\sin \theta
So, we get, LHS = RHS
Hence, we have proved that
cosecθ(secθ1)cotθ(1cosθ)=tanθsinθ\operatorname{cosec}\theta \left( \sec \theta -1 \right)-\cot \theta \left( 1-\cos \theta \right)=\tan \theta -\sin \theta

Note: In these types of questions, when you could not think of any other identity by looking at the expression, it is advisable to convert the whole expression in terms of sinθ\sin \theta and cosθ\cos \theta . In case, we don’t get the expression which is given in the RHS, then we can take RHS also and convert it in terms of sinθ\sin \theta and cosθ\cos \theta and show it to be equal to LHS. So, basically in these questions of proof, we can take each side individually, solve them, and prove them equal.