Solveeit Logo

Question

Question: Prove the following expression if it is given that \({{x}^{16}}{{y}^{9}}={{\left( {{x}^{2}}+y \right...

Prove the following expression if it is given that x16y9=(x2+y)17{{x}^{16}}{{y}^{9}}={{\left( {{x}^{2}}+y \right)}^{17}}.
dydx=2yx\dfrac{dy}{dx}=\dfrac{2y}{x}.

Explanation

Solution

Hint: Here, we will use differentiation to prove the given statement that dydx=2yx\dfrac{dy}{dx}=\dfrac{2y}{x}. We will differentiate both side of thee given equation that is x16y9=(x2+y)17{{x}^{16}}{{y}^{9}}={{\left( {{x}^{2}}+y \right)}^{17}} with respect to x and hence find the value of dydx\dfrac{dy}{dx}. We can use product rule of differentiation here which is given as, if u and v are two functions of x then the differentiation of product of u and v is given as d(u.v)dx=u.dvdx+v.dudx\dfrac{d\left( u.v \right)}{dx}=u.\dfrac{dv}{dx}+v.\dfrac{du}{dx}.

Complete step-by-step answer:
Since, the equation given to us is:
x16y9=(x2+y)17{{x}^{16}}{{y}^{9}}={{\left( {{x}^{2}}+y \right)}^{17}}
On differentiating both sides of this equation with respect to x, we get:
x169y8dydx+y916x15=17(x2+y)16.(2x+dydx){{x}^{16}}9{{y}^{8}}\dfrac{dy}{dx}+{{y}^{9}}16{{x}^{15}}=17{{\left( {{x}^{2}}+y \right)}^{16}}.\left( 2x+\dfrac{dy}{dx} \right)
On dividing and multiplying the first term by y and the second term by x (terms of left hand side) we can also write it as:
16x16y9x+9x16y9ydydx=17(x2+y)16.(2x+dydx)\dfrac{16{{x}^{16}}{{y}^{9}}}{x}+\dfrac{9{{x}^{16}}{{y}^{9}}}{y}\dfrac{dy}{dx}=17{{\left( {{x}^{2}}+y \right)}^{16}}.\left( 2x+\dfrac{dy}{dx} \right)
On taking x16y9{{x}^{16}}{{y}^{9}} common on LHS, we can write as:
x16y9(16x+9ydydx)=17(x2+y)16(2x+dydx){{x}^{16}}{{y}^{9}}\left( \dfrac{16}{x}+\dfrac{9}{y}\dfrac{dy}{dx} \right)=17{{\left( {{x}^{2}}+y \right)}^{16}}\left( 2x+\dfrac{dy}{dx} \right)
Since, x16y9=(x2+y)17{{x}^{16}}{{y}^{9}}={{\left( {{x}^{2}}+y \right)}^{17}}, using it we can write:
(x2+y)17(16x+9y.dydx)=17(x2+y)16(2x+dydx){{\left( {{x}^{2}}+y \right)}^{17}}\left( \dfrac{16}{x}+\dfrac{9}{y}.\dfrac{dy}{dx} \right)=17{{\left( {{x}^{2}}+y \right)}^{16}}\left( 2x+\dfrac{dy}{dx} \right)
On cancelling (x2+y)16{{\left( {{x}^{2}}+y \right)}^{16}} from both sides, we get:
(x2+y)(16x+9ydydx)=17(2x+dydx)\left( {{x}^{2}}+y \right)\left( \dfrac{16}{x}+\dfrac{9}{y}\dfrac{dy}{dx} \right)=17\left( 2x+\dfrac{dy}{dx} \right)
On multiplying by opening the brackets, we get:

& {{x}^{2}}\dfrac{16}{x}+{{x}^{2}}.\dfrac{9}{y}.\dfrac{dy}{dx}+\dfrac{16y}{x}+\dfrac{9}{y}.y\dfrac{dy}{dx}=34x+17\dfrac{dy}{dx} \\\ & \Rightarrow 16x+\left( \dfrac{9{{x}^{2}}}{y} \right)\dfrac{dy}{dx}+\dfrac{16y}{x}+9\dfrac{dy}{dx}=34x+17\dfrac{dy}{dx} \\\ & \Rightarrow \dfrac{9{{x}^{2}}}{y}\dfrac{dy}{dx}+\dfrac{16y}{x}=34x-16x+17\dfrac{dy}{dx}-9\dfrac{dy}{dx} \\\ & \Rightarrow \dfrac{9{{x}^{2}}}{y}\dfrac{dy}{dx}-8\dfrac{dy}{dx}=18x-\dfrac{16y}{x} \\\ & \Rightarrow \left( \dfrac{9{{x}^{2}}}{y}-8 \right)\dfrac{dy}{dx}=\dfrac{2y}{x}\left( \dfrac{9{{x}^{2}}}{y}-8 \right) \\\ \end{aligned}$$ On cancelling $\left( \dfrac{9{{x}^{2}}}{y}-8 \right)$ from both sides, we get: $\dfrac{dy}{dx}=\dfrac{2y}{x}$ Hence, we have proved the given expression using the given equation. Note: Students should note here that while differentiating the left hand side of the given equation, we have used the product rule which states that $\dfrac{d\left( u.v \right)}{dx}=u.\dfrac{dv}{dx}+v.\dfrac{du}{dx}$, where u and v are functions of x. Students should observe in the last step that we can write $18x-\dfrac{16y}{x}$ as $\dfrac{2y}{x}\left( \dfrac{9{{x}^{2}}}{y}-8 \right)$, so that the term $\left( \dfrac{9{{x}^{2}}}{y}-8 \right)$ can be cancelled from the both sides.