Solveeit Logo

Question

Question: Prove the following expression \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\s...

Prove the following expression sin70ocos20o+csc20osec70o2cos70ocsc20o=0\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0

Explanation

Solution

Hint: We convert all trigonometric functions in the denominator into corresponding complementary trigonometric functions using the below formulae.

cosθ =sin(π2θ)\cos \theta \text{ }=\sin \left( \dfrac{\pi }{2}-\theta \right)
sinθ=cos(π2θ)\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)
cscθ=sec(π2θ)\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)
sinθ=cos(π2θ)\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)

Complete step-by-step answer:

We have to prove the question sin70ocos20o+csc20osec70o2cos70ocsc20o=0\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0
Now, we will take left hand side i.e. sin70ocos20o+csc20osec70o2cos70ocsc20o\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}
Let sin70ocos20o+csc20osec70o2cos70ocsc20o\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}} be equation 1.
Now we will simplify the denominators of equation 1 in the following way.
First we will convert cos20\cos 20{}^\circ to sin70\sin 70{}^\circ using the formula cosθ=sin(π2θ)\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right) ,
after converting cos20\cos 20{}^\circ to sin70\sin 70{}^\circ ,equation 1 becomes sin70osin70o+csc20osec70o2cos70ocsc20o\dfrac{\sin {{70}^{o}}}{\sin {{70}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}
Now we will cancel equal terms in numerator and denominator, after cancelling common terms in numerator and denominator, equation 1 becomes
1+csc20osec70o2cos70ocsc20o\Rightarrow 1+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}} and let it be equation 2.
Now we will convert a sec70\sec 70{}^\circ to csc20\csc 20{}^\circ using the formula cscθ=sec(π2θ)\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right) ,after converting
sec70\sec 70{}^\circ to csc20 !!!! \text{csc20 }\\!\\!{}^\circ\\!\\!\text{ } equation 2 becomes sin70osin70o+csc20ocsc20o-2cos70ocsc20o\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\sin {{70}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{csc2}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}} ,
now we will cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 2 becomes
1+12cos70ocsc20o\Rightarrow 1+1-2\cos {{70}^{o}}\csc {{20}^{o}}
22cos70ocsc20o\Rightarrow 2-2\cos {{70}^{o}}\csc {{20}^{o}} and let it be equation 3.
We know that cscθ\csc\theta and sinθ\sin \theta are mutual reciprocals, that means cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } or sinθ=1cscθ\sin \theta =\dfrac{1}{\csc \theta }
Now we will convert acsc20\csc 20{}^\circ to 1sin20\dfrac{1}{\sin 20{}^\circ } and equation 3 becomes
22cos70sin202-2\dfrac{\cos 70{}^\circ }{\sin 20{}^\circ } let it be equation 4.
Now we will convert sin20\sin 20{}^\circ to cos70\cos 70{}^\circ using the formula sinθ=cos(π2θ)\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right) ,after converting
sin20\sin 20{}^\circ to cos70\cos 70{}^\circ equation 4 becomes 22cos70cos702-2\dfrac{\cos 70{}^\circ }{\cos 70{}^\circ } .
Now we cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 4 becomes
22×1\Rightarrow 2-2\times 1
0\Rightarrow 0
=RHS
LHS=RHS
Hence, the following expression  sin70ocos20o+csc20osec70o2cos70ocsc20o=0\text{ }\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0 is proved.
So,  sin70ocos20o+csc20osec70o-2cos70ocsc20o=0\text{ }\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\text{cos2}{{\text{0}}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{sec7}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\text{=0}

Note: Sometimes we convert trigonometric functions of non-standard angles to corresponding complementary trigonometric functions i.e. cosθ\cos \theta to sin(π2θ)\sin \left( \dfrac{\pi }{2}-\theta \right), such that this conversion will help us to simplify the trigonometric equations and then there will be a confusion in converting trigonometric functions into corresponding complementary trigonometric functions i.e. cosθ\cos \theta to sin(π2θ)\sin \left( \dfrac{\pi }{2}-\theta \right) so, be perfect with this type of basic formulae here.