Solveeit Logo

Question

Question: Prove the following expression \(\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=\dfrac{-\sin 2x}{\cos 10x...

Prove the following expression cos9xcos5xsin17xsin3x=sin2xcos10x\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=\dfrac{-\sin 2x}{\cos 10x}

Explanation

Solution

Hint: Using trigonometric fórmula cosxcosy=2sinx+y2sinxy2\cos x-\cos y=-2\sin \dfrac{x+y}{2}\sin \dfrac{x-y}{2} and sinxsiny=2cosx+y2sinxy2\sin x-\sin y=2\cos \dfrac{x+y}{2}\sin \dfrac{x-y}{2}. Take the LHS and Then we just need to simplify the expression. On simplifying we will get the RHS.

Complete step-by-step answer:
Mark the expression as (i) so we have cos9xcos5xsin17xsin3x=sin2xcos10x...(i)\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=\dfrac{-\sin 2x}{\cos 10x}...(i)
Trigonometry is a branch which gives access to distinct degrees and values of something. With the help of trigonometry, any angle between lines or angle of a triangle can be found out. There are direct trigonometric values such as sin 0=0, sin 3030^\circ = 0.5 and so on. Relevant is the case with cosine, tangent, secant, cosecant and cotangent.
With the help of trigonometry, relation between angles and sides of a triangle can be found out. Consider any side of the trigonometric expression according to ease.
Here consider left hand side of the expression (i)(i) which is cos9xcos5xsin17xsin3x\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}
Now apply the formula cosxcosy=2sinx+y2sinxy2\cos x-\cos y=-2\sin \dfrac{x+y}{2}\sin \dfrac{x-y}{2} as a substitution in the numerator and sinxsiny=2cosx+y2sinxy2\sin x-\sin y=2\cos \dfrac{x+y}{2}\sin \dfrac{x-y}{2} as a substitution in the denominator.
This implies that the left hand side of expression (i) changes into,
cos9xcos5xsin17xsin3x=2sin(9x+5x2)sin(9x5x2)2cos(17x+3x2)sin(17x3x2)\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=\dfrac{-2\sin \left( \dfrac{9x+5x}{2} \right)\sin \left( \dfrac{9x-5x}{2} \right)}{2\cos \left( \dfrac{17x+3x}{2} \right)\sin \left( \dfrac{17x-3x}{2} \right)}
Now we further solve it to get the simplest terms. This implies that 2sin(14x2)sin(4x2)2cos(20x2)sin(14x2)=2sin7xsin2x2cos10xsin7x\dfrac{-2\sin \left( \dfrac{14x}{2} \right)\sin \left( \dfrac{4x}{2} \right)}{2\cos \left( \dfrac{20x}{2} \right)\sin \left( \dfrac{14x}{2} \right)}=\dfrac{-2\sin 7x\sin 2x}{2\cos 10x\sin 7x}
So, till here it implies that the value of the expression is changed to cos9xcos5xsin17xsin3x=2sin7xsin2x2cos10xsin7x\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=\dfrac{-2\sin 7x\sin 2x}{2\cos 10x\sin 7x}
Now we cancel the numerator and denominator. This implies 2sin7xsin2x2cos10xsin7x=sin2xcos10x\dfrac{-2\sin 7x\sin 2x}{2\cos 10x\sin 7x}=\dfrac{-\sin 2x}{\cos 10x}
This is equal to the right hand side of expression (i)(i)
Hence, cos9xcos5xsin17xsin3x=sin2xcos10x\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=\dfrac{-\sin 2x}{\cos 10x} is proved.

Note: Use of trigonometric formulas like cosxcosy=2sinx+y2sinxy2\cos x-\cos y=-2\sin \dfrac{x+y}{2}\sin \dfrac{x-y}{2}and sinxsiny=2cosx+y2sinxy2\sin x-\sin y=2\cos \dfrac{x+y}{2}\sin \dfrac{x-y}{2}needs focus while applying. This is because if focus is lost in between solving the negative signs will not solve properly. It will imply a wrong answer. The best trick is to solve it step by step so that solution while solving is understood clearly.