Solveeit Logo

Question

Question: Prove the following expression: \({{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\cos }^{-1}}\left( \...

Prove the following expression:
cos1(45)+cos1(1213)=cos1(3365){{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\cos }^{-1}}\left( \dfrac{12}{13} \right)={{\cos }^{-1}}\left( \dfrac{33}{65} \right)

Explanation

Solution

From the given expression we will take LHS and solve it by applying various trigonometric identities to prove it equal to the RHS part of the expression. We need to prove that sum of angles cos1(45)andcos1(1213){{\cos }^{-1}}\left( \dfrac{4}{5} \right)\,and\,{{\cos }^{-1}}\left( \dfrac{12}{13} \right) is equal to angle cos1(3365){{\cos }^{-1}}\left( \dfrac{33}{65} \right) we know thatcos(cos1(45)+cos1(1213))=cos(cos1(3365))\cos \left( {{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\cos }^{-1}}\left( \dfrac{12}{13} \right) \right)=\cos \left( {{\cos }^{-1}}\left( \dfrac{33}{65} \right) \right) so we will then apply the identity cos(a+b)=cosa.cosbsina.sinb\cos \left( a+b \right)=\cos a.\cos b-\sin a.\sin b .

Complete step by step answer:
We know that cos1θ{{\cos }^{-1}}\theta is the value of angle θ\theta in radians.
So let us suppose the angle A = cos1(45){{\cos }^{-1}}\left( \dfrac{4}{5} \right)\,, angle B = cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) and angle C = cos1(3365){{\cos }^{-1}}\left( \dfrac{33}{65} \right)
Hence we get, cosA=45,cosB=1213andcosC=3365\cos A=\dfrac{4}{5},\cos B=\dfrac{12}{13}\,and\,\cos C=\dfrac{33}{65}
Now, if we apply cosine on both the side of the given expression we get,
cos(A+B)=cos(C)\cos \left( A+B \right)=\cos \left( C \right)
And we know that , cos(a+b)=cosa.cosbsina.sinb\cos \left( a+b \right)=\cos a.\cos b-\sin a.\sin b so now,
We need to find the values sinAandsinB\sin A\,and\,\sin B first, for sinA\sin A
sin2A+cos2A=1 sin2A=1cos2A sinA=1(45)2 sinA=35 \begin{aligned} & {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\\ & {{\sin }^{2}}A=1-{{\cos }^{2}}A \\\ & \sin A=\sqrt{1-{{\left( \dfrac{4}{5} \right)}^{2}}} \\\ & \sin A=\dfrac{3}{5} \\\ \end{aligned}
Similarly for sinB\sin B, we get

& {{\sin }^{2}}B+{{\cos }^{2}}B=1 \\\ & {{\sin }^{2}}B=1-{{\cos }^{2}}B \\\ & \sin B=\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\\ & \sin B=\dfrac{5}{13} \\\ \end{aligned}$$ Now, we know that $\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B$ Putting values $\cos A=\dfrac{4}{5},\cos B=\dfrac{3}{5},\sin A\dfrac{3}{5}\,and\,\sin B=\dfrac{5}{13}$ in the above expression we get, $\cos \left( A+B \right)=\dfrac{4}{5}\times \dfrac{12}{13}-\dfrac{3}{5}\times \dfrac{5}{13}$ $\begin{aligned} & \cos \left( A+B \right)=\dfrac{48}{65}-\dfrac{3}{13} \\\ & \cos \left( A+B \right)=\dfrac{48-15}{65} \\\ & \cos \left( A+B \right)=\dfrac{33}{65}=\cos C \\\ \end{aligned}$ Hence we proved that $\cos \left( A+B \right)=\cos C$ i.e. $A+B=C$ and hence, we proved ${{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\cos }^{-1}}\left( \dfrac{12}{13} \right)={{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ **Note:** Whenever you are solving questions related to the inverse trigonometric functions try to think of ${{\cos }^{-1}}\theta ,{{\sin }^{-1}}\theta $ etc. as the value of angle $\theta $ in the radians. And always try to convert inverse trigonometric functions to simple trigonometric functions by applying sine, cosine etc. on both sides of the equation. You also need to remember all basic trigonometric and inverse trigonometric identities in order to solve these kinds of questions and after that you will be able to easily figure out which identity to apply and when to apply it.