Solveeit Logo

Question

Question: Prove the following expression \(2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \df...

Prove the following expression 2sin1(35)tan1(1731)=π42{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}.

Explanation

Solution

Hint:We will use the formulas of trigonometry to which we are familiar. The ones that are used here are sinx=perpendicularHypotenuse\sin x=\dfrac{\text{perpendicular}}{\text{Hypotenuse}} and tanx=perpendicularBase\tan x=\dfrac{\text{perpendicular}}{\text{Base}} for finding the values of trigonometric terms. Also, we have used tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) to solve the question further.

Complete step-by-step answer:
Let us first consider the expression 2sin1(35)tan1(1731)=π4...(i)2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}...(i). We will start with substituting sin1(35)=x{{\sin }^{-1}}\left( \dfrac{3}{5} \right)=x. Thus after placing the inverse sine term to the right side of the equation we will get 35=sinx\dfrac{3}{5}=\sin x. By the formula sinx=perpendicularHypotenuse\sin x=\dfrac{\text{perpendicular}}{\text{Hypotenuse}} we have 3 as perpendicular and 5 as hypotenuse. The diagram for this is given as

Now we will apply the Pythagoras theorem. Thus we will get,
(5)2=y2+(3)2 25=y2+9 y2=259 y2=16 y2=16 y=±4 \begin{aligned} & {{\left( 5 \right)}^{2}}={{y}^{2}}+{{\left( 3 \right)}^{2}} \\\ & \Rightarrow 25={{y}^{2}}+9 \\\ & \Rightarrow {{y}^{2}}=25-9 \\\ & \Rightarrow {{y}^{2}}=16 \\\ & \Rightarrow {{y}^{2}}=\sqrt{16} \\\ & \Rightarrow y=\pm 4 \\\ \end{aligned}
As the side of the triangle cannot be negative therefore y = 4. Now we will use the formula given by tanx=perpendicularBase\tan x=\dfrac{\text{perpendicular}}{\text{Base}}. As we have perpendicular as 3 and base as 4. Thus we have tan(x)=34\tan \left( x \right)=\dfrac{3}{4}. Taking the inverse tangent to the right side of the equation we will have x=tan1(34)x={{\tan }^{-1}}\left( \dfrac{3}{4} \right). Since, we have sin1(35)=x{{\sin }^{-1}}\left( \dfrac{3}{5} \right)=x thus, sin1(35)=tan1(34){{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right). Now, we will substitute this value in the left hand side of the equation (i) which results into 2sin1(35)tan1(1731)=2tan1(34)tan1(1731) 2sin1(35)tan1(1731)=tan1(34)+tan1(34)tan1(1731) \begin{aligned} & 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=2{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ \end{aligned}
Now, we will apply the formula given by tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right). Thus our equation changes into
2sin1(35)tan1(1731)=tan1(34)+tan1(34)tan1(1731) 2sin1(35)tan1(1731)=tan1(34+341(34)(34))tan1(1731) 2sin1(35)tan1(1731)=tan1(6416916)tan1(1731) 2sin1(35)tan1(1731)=tan1(61×47)tan1(1731) 2sin1(35)tan1(1731)=tan1(277)tan1(1731) \begin{aligned} & 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ & \Rightarrow \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{4}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{4} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ & \Rightarrow \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{6}{4}}{\dfrac{16-9}{16}} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{6}{1}\times \dfrac{4}{7} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{27}{7} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\\ \end{aligned}
Now we will again apply the formula given by tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right). Thus, we get
2sin1(35)tan1(1731)=tan1(24717311+(247)(1731)) 2sin1(35)tan1(1731)=tan1(744119217217+408217) 2sin1(35)tan1(1731)=tan1(645645) 2sin1(35)tan1(1731)=tan1(1) \begin{aligned} & 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\left( \dfrac{24}{7} \right)\left( \dfrac{17}{31} \right)} \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{744-119}{217}}{\dfrac{217+408}{217}} \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{645}{645} \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( 1 \right) \\\ \end{aligned}
As we know that the value of tan1(π4)=1{{\tan }^{-1}}\left( \dfrac{\pi }{4} \right)=1 and tan1tan(x)=x{{\tan }^{-1}}\tan \left( x \right)=x we can have
2sin1(35)tan1(1731)=tan1(1) 2sin1(35)tan1(1731)=tan1(tan(π4)) 2sin1(35)tan1(1731)=π4 \begin{aligned} & 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( 1 \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4} \\\ \end{aligned}
Hence, the value of the expression 2sin1(35)tan1(1731)=π42{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}.

Note: Alternatively we could have used the formula given by tan(2x)=2tan(x)1tan2(x)\tan \left( 2x \right)=\dfrac{2\tan \left( x \right)}{1-{{\tan }^{2}}\left( x \right)} after tan(x)=34\tan \left( x \right)=\dfrac{3}{4}. By this we can directly do the substitution 2sin1(35)2{{\sin }^{-1}}\left( \dfrac{3}{5} \right) in expression (i). Also, instead of splitting 2tan1(34)2{{\tan }^{-1}}\left( \dfrac{3}{4} \right) into tan1(34)+tan1(34){{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right) we could have used the formula of 2tan1(x)=tan1(2x1x2)2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) and proceeded further. Moreover, instead of converting the inverse sine term into tangent with the help of diagram and Pythagoras we could have use direct formula for converting it. The formula for this is given by sin1x=tan1(x1x2){{\sin }^{-1}}x={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right).