Question
Question: Prove the following equation: \((\sec A - \csc A)(1 + \tan A + \cot A) = \tan A\sec A - \cot A\csc...
Prove the following equation:
(secA−cscA)(1+tanA+cotA)=tanAsecA−cotAcscA.
Solution
Hint-To prove this question, we will use basic trigonometric identities such as
sin2θ+cos2θ=1,sinθ=cscθ1,cosθ=secθ1 tanθ=cotθ1=cosθsinθ
Complete step-by-step solution -
Given expression is
(secA−cscA)(1+tanA+cotA)=tanAsecA−cotAcscA
To proceed further we will use L.H.S of the above equation
Substituting the values of secA,cscA,tanA in terms of sinA and cosA =[cosA1−sinA1][1+cosAsinA+sinAcosA]
Simplifying the above equation further, we get
=[sinAcosAsinA−cosA][sinAcosAcosAsinA+sin2A+cos2A] =sin2Acos2A(sinA−cosA)(sin2A+sinAcosA+cos2A)
As we know that [a3−b3=(a−b)(a2+ab+b2)]
=sin2Acos2Asin3A−cos3A......................(2)
Now, we will take the R.H.S, of the given expression
=tanAsecA−cotAcscA
Writing the above equation in terms of sinA,cosA
=cosAsinA×cosA1−sinAcosA×sinA1 =cos2AsinA−sin2AcosA =cos2Asin2Asin3A−cos3A...........................(3)
From equation 2 and 3 it is clear that the L.H.S=R.H.S
Note- In order to solve such questions, remember the basic trigonometric identities which are also listed above. Always try to manipulate the equations keeping in mind the RHS or the equation to be proved, as sometimes there are multiple manipulations available in trigonometry but not all are required. Try to use algebraic formulas when necessary in order to solve the equation quickly.