Solveeit Logo

Question

Question: Prove the following equation, if \[{{x}^{y}}={{e}^{x-y}}\]. \[\dfrac{dy}{dx}=\dfrac{\ln x}{{{(1+\l...

Prove the following equation, if xy=exy{{x}^{y}}={{e}^{x-y}}.
dydx=lnx(1+lnx)2\dfrac{dy}{dx}=\dfrac{\ln x}{{{(1+\ln x)}^{2}}}.

Explanation

Solution

Hint: We know that ln(xy)=ylnx\ln ({{x}^{y}})=y\ln x and ln(exy)=xy\ln ({{e}^{x-y}})=x-y. Using these formulas we will get the right answer.
Complete step-by-step answer:
We are given xy=exy{{x}^{y}}={{e}^{x-y}}.
Now, we will apply natural logarithm on both sides.
On applying natural logarithm, we get
ln(xy)=ln(exy).....\ln ({{x}^{y}})=\ln ({{e}^{x-y}}).....equation(1)(1)
Now, we know, ln(ab)=b×ln(a)\ln ({{a}^{b}})=b\times \ln (a)
So, ln(xy)=yln(x)\ln ({{x}^{y}})=y\ln (x) and ln(exy)=(xy)ln(e)\ln ({{e}^{x-y}})=(x-y)\ln (e)
Now, we will substitute the values of ln(xy)\ln ({{x}^{y}}) and ln(exy)\ln ({{e}^{x-y}}) in equation(1)(1).
On substituting the values of ln(xy)\ln ({{x}^{y}}) and ln(exy)\ln ({{e}^{x-y}}) in equation(1)(1), we will get
ylnx=(xy)ln(e).....y\ln x=(x-y)\ln (e).....equation(2)(2)
Now, we know ln(e)=1\ln (e)=1
We will substitute ln(e)=1\ln (e)=1 in equation(2)(2)
ylnx=xy\Rightarrow y\ln x=x-y
Now, we will differentiate both sides with respect to xx.
On differentiating both sides with respect to xx, we get
ddx(ylnx)=1dydx.......\dfrac{d}{dx}(y\ln x)=1-\dfrac{dy}{dx}....... equation (3)\left( 3 \right)
Now, yln(x)y\ln (x) is of the form f(x).g(x)f(x).g(x) where f(x)=yf(x)=y and g(x)=ln(x)g(x)=\ln (x)
So, to find its derivative, we will apply the product rule of differentiation, which is given by d(u.v)dx=uv+vu\dfrac{d(u.v)}{dx}=uv'+vu'.
Hence, we get ddx(yln(x))=dydx.ln(x)+y.1x..........\dfrac{d}{dx}(y\ln (x))=\dfrac{dy}{dx}.\ln (x)+y.\dfrac{1}{x}..........equation(4)(4)
Now, we will substitute the value from equation (4)(4) in equation (3)(3)
On substituting equation (4)(4) in equation (3)(3), we get,
dydx.ln(x)+yx=1dydx\dfrac{dy}{dx}.\ln (x)+\dfrac{y}{x}=1-\dfrac{dy}{dx}
Now, we will take all terms with dydx\dfrac{dy}{dx} to LHS and remaining terms to RHS. We get
dydx(1+lnx)=1yx.......\dfrac{dy}{dx}(1+\ln x)=1-\dfrac{y}{x}.......equation(5)(5)
Now, we need to find the value of yx\dfrac{y}{x}.
From equation (2)(2), we have
ylnx=xyy\ln x=x-y
Taking yy from LHS to RHS, we get
lnx=xyy\ln x=\dfrac{x-y}{y}
Or,lnx=xy1\ln x=\dfrac{x}{y}-1
Or, 1+lnx=xy1+\ln x=\dfrac{x}{y}
Or, yx=11+lnx\dfrac{y}{x}=\dfrac{1}{1+\ln x}
Now, we will substitute yx=11+lnx\dfrac{y}{x}=\dfrac{1}{1+\ln x} in equation(5)(5).
On substituting yx=11+lnx\dfrac{y}{x}=\dfrac{1}{1+\ln x} in equation(5)(5) , we get ,
dydx(1+lnx)=111+ln(x)\dfrac{dy}{dx}(1+\ln x)=1-\dfrac{1}{1+\ln (x)}
dydx(1+lnx)=1+ln(x)11+ln(x)\Rightarrow \dfrac{dy}{dx}(1+\ln x)=\dfrac{1+\ln (x)-1}{1+\ln (x)}
dydx=ln(x)(1+ln(x))2\Rightarrow \dfrac{dy}{dx}=\dfrac{\ln (x)}{{{(1+\ln (x))}^{2}}}
Hence proved.
Note: Always remember that ddx(ln(x))=1x\dfrac{d}{dx}(\ln (x))=\dfrac{1}{x} and not 1x\dfrac{-1}{x}. Students generally make this mistake. Also, questions with variables in exponents are generally solved using logarithms as applying logarithm changes exponents into product. This makes the differentiation easier. On applying log in exponents , they are converted into products . Then , to find their derivative , we can apply the product rule of differentiation , which is given as d(u.v)dx=uv+vu\dfrac{d(u.v)}{dx}=uv'+vu'.