Solveeit Logo

Question

Question: Prove the following equation: \({\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x\)...

Prove the following equation:
cos22xcos26x=sin4xsin8x{\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x

Explanation

Solution

Hint- We will be using the following trigonometric identities as L.H.S. has the term cos22x{\cos ^2}2x.
We know cos2x=2cos2x1 \Rightarrow \cos 2x = 2{\cos ^2}x - 1 …(1)
Replacing x2xx \to 2x in equation (1), then we get
cos4x=2cos22x1\Rightarrow \cos 4x = 2{\cos ^2}2x - 1
cos22x=cos4x+12\Rightarrow {\cos ^2}2x = \dfrac{{\cos 4x + 1}}{2} …(2)
and replacing x6xx \to 6x in equation (1), then we get
cos12x=2cos26x1\Rightarrow \cos 12x = 2{\cos ^2}6x - 1
cos26x=cos12x+12\Rightarrow {\cos ^2}6x = \dfrac{{\cos 12x + 1}}{2} ….(3)

Complete step-by-step answer:
According to question, we have
cos22xcos26x=sin4xsin8x{\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x ….(4)
Considering LHS,
cos22xcos26x{\cos ^2}2x - {\cos ^2}6x
Now replacing cos22x{\cos ^2}2x and cos26x{\cos ^2}6x from equation (2) and (3), we get
cos4x+12cos12x+12\Rightarrow \dfrac{{\cos 4x + 1}}{2} - \dfrac{{\cos 12x + 1}}{2}
12cos4x+1212cos12x12\Rightarrow \dfrac{1}{2}\cos 4x + \dfrac{1}{2} - \dfrac{1}{2}\cos 12x - \dfrac{1}{2}
\Rightarrow \dfrac{1}{2}\left\\{ {\cos 4x - \cos 12x} \right\\}
Now using formula cosAcosB=2sinA+B2sinBA2\cos A - \cos B = 2\sin \dfrac{{A + B}}{2}\sin \dfrac{{B - A}}{2} we get
\dfrac{1}{2}\left\\{ {2\sin \dfrac{{4x + 12x}}{2}\sin \dfrac{{12x - 4x}}{2}} \right\\} \Rightarrow \sin \dfrac{{16x}}{2}\sin \dfrac{{8x}}{2}
sin4xsin8x\Rightarrow \sin 4x\sin 8x = RHS
Hence, we proved that cos22xcos26x=sin4xsin8x{\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x.

Note- We have to solve such questions based on proving by using trigonometric identities. Also, it can be proved from both sides, from LHS and from RHS both. Also, if it is not getting solved by simplifying one side, then in that case we will simplify both sides and try to prove the given expression.