Solveeit Logo

Question

Question: Prove the following: \[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \t...

Prove the following:
tanθ1cotθ+cotθ1tanθ=1+secθ cosecθ\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta

Explanation

Solution

Hint - We will prove that the Left Hand Side and the Right Hand Side of the given trigonometric equation are equal, for which, we first write down the given equation and start solving either the LHS or the RHS of the equation by taking the help of various trigonometric identities.

Complete step-by-step answer:
The given equation in the question is,
tanθ1cotθ+cotθ1tanθ=1+secθ cosecθ\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta

Taking LHS, we get
tanθ1cotθ+cotθ1tanθ\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }}

Now, we will make it in terms of sinθ\sin \theta and cosθ\cos \theta .
We know that, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}, then it becomes,
= sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}
Now, by taking LCM in the denominator, we get

=sinθcosθsinθcosθsinθ+cosθsincosθsinθcosθ\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin }}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}
= sinθcosθ×sinθsinθcosθ+cosθsinθ×cosθcosθsinθ\dfrac{{\sin \theta }}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\sin \theta - \cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\cos \theta - \sin \theta }}

= sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\cos \theta - \sin \theta } \right)}}
By taking minus common from the second term,
= sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\sin \theta - \cos \theta } \right)}}

= sin3θcos3θcosθsinθ(sinθcosθ)\dfrac{{{{\sin }^3}\theta - {{\cos }^3}\theta }}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}
Now, in the numerator, sin3θcos3θ{\sin ^3}\theta - {\cos ^3}\theta represents an identity, i.e., a3b3=(ab)(a2+ab+b2){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right), therefore, it becomes,
= (sinθcosθ)(sin2θ+sinθcosθ+cos2θ)cosθsinθ(sinθcosθ)\dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {{{\sin }^2}\theta + \sin \theta \cdot \cos \theta + {{\cos }^2}\theta } \right)}}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}
So, by cancelling the equal terms in the numerator and denominator, we obtain
=(sin2θ+cos2θ+sinθcosθ)cosθsinθ\dfrac{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cdot \cos \theta } \right)}}{{\cos \theta \cdot \sin \theta }}
= 1+sinθcosθcosθsinθ\dfrac{{1 + \sin \theta \cdot \cos \theta }}{{\cos \theta \cdot \sin \theta }} [sin2θ+cos2θ=1]\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]
Now, by separating the terms, we obtain
= 1cosθsinθ+sinθcosθsinθcosθ\dfrac{1}{{\cos \theta \cdot \sin \theta }} + \dfrac{{\sin \theta \cdot \cos \theta }}{{sin\theta \cdot \cos \theta }}
By cancelling out the equal terms,
= secθ cosecθ+1\sec \theta \cdot \ co sec\theta + 1 , which can also be written as,
=1+secθ cosecθ1 + \sec \theta \cdot \ co sec\theta
=RHS
Hence Proved.

Note – One should be careful while doing such questions because in these questions we have to use different identities which might be confusing sometimes. So, there should be no doubt about any identity and before doing these questions one must be clear in all aspects.