Solveeit Logo

Question

Question: Prove the following: \(\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x...

Prove the following:
tan(π4+x)tan(π4x)=(1+tanx1tanx)2\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)}={{\left( \dfrac{1+\tan x}{1-\tan x} \right)}^{2}}

Explanation

Solution

Hint: For solving this question we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas like tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} and tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Given:
We have to prove the following equation:
tan(π4+x)tan(π4x)=(1+tanx1tanx)2\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)}={{\left( \dfrac{1+\tan x}{1-\tan x} \right)}^{2}}
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
tan(A+B)=tanA+tanB1tanAtanB................(1) tan(AB)=tanAtanB1+tanAtanB................(2) tanπ4=1..............................................(3) \begin{aligned} & \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}................\left( 1 \right) \\\ & \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}................\left( 2 \right) \\\ & \tan \dfrac{\pi }{4}=1..............................................\left( 3 \right) \\\ \end{aligned}
Now, we will use the above three formulas to simplify the term on the left-hand side.
On the left-hand side, we have tan(π4+x)tan(π4x)\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)} .
Now, we will use the formula from the equation (1) to write tan(π4+x)=tanπ4+tanx1tanπ4tanx\tan \left( \dfrac{\pi }{4}+x \right)=\dfrac{\tan \dfrac{\pi }{4}+\tan x}{1-\tan \dfrac{\pi }{4}\tan x} and formula from the equation (2) to write tan(π4x)=tanπ4tanx1+tanπ4tanx\tan \left( \dfrac{\pi }{4}-x \right)=\dfrac{\tan \dfrac{\pi }{4}-\tan x}{1+\tan \dfrac{\pi }{4}\tan x} in the term on the left-hand side. Then,

& \dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)} \\\ & \Rightarrow \dfrac{\left( \dfrac{\tan \dfrac{\pi }{4}+\tan x}{1-\tan \dfrac{\pi }{4}\tan x} \right)}{\left( \dfrac{\tan \dfrac{\pi }{4}-\tan x}{1+\tan \dfrac{\pi }{4}\tan x} \right)} \\\ & \Rightarrow \left( \dfrac{\tan \dfrac{\pi }{4}+\tan x}{1-\tan \dfrac{\pi }{4}\tan x} \right)\times \left( \dfrac{1+\tan \dfrac{\pi }{4}\tan x}{\tan \dfrac{\pi }{4}-\tan x} \right) \\\ \end{aligned}$$ Now, we will use the formula from the equation (3) to write $\tan \dfrac{\pi }{4}=1$ in the above expression. Then, $$\begin{aligned} & \left( \dfrac{\tan \dfrac{\pi }{4}+\tan x}{1-\tan \dfrac{\pi }{4}\tan x} \right)\times \left( \dfrac{1+\tan \dfrac{\pi }{4}\tan x}{\tan \dfrac{\pi }{4}-\tan x} \right) \\\ & \Rightarrow \left( \dfrac{1+\tan x}{1-1\times \tan x} \right)\times \left( \dfrac{1+1\times \tan x}{1-\tan x} \right) \\\ & \Rightarrow \left( \dfrac{1+\tan x}{1-\tan x} \right)\times \left( \dfrac{1+\tan x}{1-\tan x} \right) \\\ & \Rightarrow \dfrac{\left( 1+\tan x \right)\times \left( 1+\tan x \right)}{\left( 1-\tan x \right)\times \left( 1-\tan x \right)} \\\ & \Rightarrow \dfrac{{{\left( 1+\tan x \right)}^{2}}}{{{\left( 1-\tan x \right)}^{2}}} \\\ & \Rightarrow {{\left( \dfrac{1+\tan x}{1-\tan x} \right)}^{2}} \\\ \end{aligned}$$ Now, from the above result, we conclude that the value of the expression $\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)}$ will be equal to the value of the expression ${{\left( \dfrac{1+\tan x}{1-\tan x} \right)}^{2}}$ . Then, $\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)}={{\left( \dfrac{1+\tan x}{1-\tan x} \right)}^{2}}$ Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side. Thus, $\dfrac{\tan \left( \dfrac{\pi }{4}+x \right)}{\tan \left( \dfrac{\pi }{4}-x \right)}={{\left( \dfrac{1+\tan x}{1-\tan x} \right)}^{2}}$ . Hence, proved. Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly. . After that, we should proceed in a stepwise manner and apply trigonometric formulas of $\tan \left( A+B \right)$ and $\tan \left( A-B \right)$ correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.