Solveeit Logo

Question

Question: Prove the following: \(\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\p...

Prove the following:
tan(π4+x)tan(π4x)=(1+tanx1tanx)2\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}

Explanation

Solution

Note that, tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} and tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.

Complete step-by-step answer:
Given to prove that tan(π4+x)tan(π4x)=(1+tanx1tanx)2\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2},
Left hand side is given by:
=tan(π4+x)tan(π4x)= \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}
Using, tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} and tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}, we get,
=tanπ4+tanx1tanπ4×tanxtanπ4tanx1+tanπ4×tanx= \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}
As, tanπ4 = 1{\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}, we get,
=(1+tanx1tanx)(1tanx1+tanx)= \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}
On simplification we get,
=1+tanx1tanx×1+tanx1tanx= \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}
As we can club the common terms, so we get,
=(1+tanx1tanx)2= {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}
= Right hand side
Hence, tan(π4+x)tan(π4x)=(1+tanx1tanx)2\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}
(proved)

Note: Note the following important formulae,
1.sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)
2.sinAcosBcosAsinB=sin(AB)\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)
3.cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)
4.cosAcosB+sinAsinB=cos(AB)\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)
5.tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
6.tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
Also, the trigonometric ratios of the standard angles are given by

| 00^\circ | 3030^\circ | 4545^\circ | 6060^\circ | 9090^\circ
---|---|---|---|---|---
Sinx\operatorname{Sin} x| 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2} | 1
Cosx\operatorname{Cos} x| 1| 32\dfrac{{\sqrt 3 }}{2}| 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
Tanx\operatorname{Tan} x| 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Undefined
CotxCotx| undefined| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0
cosecx\cos ecx| undefined| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
Secx\operatorname{Sec} x| 1| 23\dfrac{2}{{\sqrt 3 }}| 2\sqrt 2 | 2| Undefined