Question
Question: Prove the following: \(\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\p...
Prove the following:
tan(4π−x)tan(4π+x)=(1−tanx1+tanx)2
Solution
Note that, tan(A+B)=1−tanAtanBtanA+tanB and tan(A−B)=1+tanAtanBtanA−tanB
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that tan(4π−x)tan(4π+x)=(1−tanx1+tanx)2,
Left hand side is given by:
=tan(4π−x)tan(4π+x)
Using, tan(A+B)=1−tanAtanBtanA+tanB and tan(A−B)=1+tanAtanBtanA−tanB, we get,
=1+tan4π×tanxtan4π−tanx1−tan4π×tanxtan4π+tanx
As, tan4π = 1, we get,
=(1+tanx1−tanx)(1−tanx1+tanx)
On simplification we get,
=1−tanx1+tanx×1−tanx1+tanx
As we can club the common terms, so we get,
=(1−tanx1+tanx)2
= Right hand side
Hence, tan(4π−x)tan(4π+x)=(1−tanx1+tanx)2
(proved)
Note: Note the following important formulae,
1.sinAcosB+cosAsinB=sin(A+B)
2.sinAcosB−cosAsinB=sin(A−B)
3.cosAcosB−sinAsinB=cos(A+B)
4.cosAcosB+sinAsinB=cos(A−B)
5.tan(A+B)=1−tanAtanBtanA+tanB
6.tan(A−B)=1+tanAtanBtanA−tanB
Also, the trigonometric ratios of the standard angles are given by
| 0∘| 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
Sinx| 0| 21 | 21 | 23 | 1
Cosx| 1| 23| 21| 21| 0
Tanx| 0| 31 | 1| 3| Undefined
Cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
Secx| 1| 32| 2| 2| Undefined