Question
Question: Prove the following: \[\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}\]...
Prove the following:
cosx+cosysinx−siny=tan2x−y
Solution
We can take the LHS of the given equation. Then we can simplify its numerator using the trigonometric identity sin(A)−sin(B)=2cos(2A+B)sin(2A−B). We can simplify the denominator using the identity cos(A)+cos(B)=2cos(2A+B)cos(2A−B). On doing further calculations, we will obtain the RHS of the equation. We can say the given equation is true when L.H.S=R.H.S
Complete step-by-step answer:
We need to prove that cosx+cosysinx−siny=tan2x−y
Let us look at the LHS,
LHS=cosx+cosysinx−siny … (1)
We can consider the numerator of the LHS
We know that sin(A)−sin(B)=2cos(2A+B)sin(2A−B)
We can substitute the values,
⇒sin(x)−sin(y)=2cos(2x+y)sin(2x−y)… (2)
We can consider the denominator of the LHS
We know that cos(A)+cos(B)=2cos(2A+B)cos(2A−B)
We can substitute the values,
⇒cos(x)+cos(y)=2cos(2x+y)cos(2x−y)… (3)
We can substitute (3) and (2) in (1)
⇒LHS=2cos(2x+y)cos(2x−y)2cos(2x+y)sin(2x−y)
On further simplification, we get,
⇒LHS=cos(2x−y)sin(2x−y)
We know that tanA=cosAsinA. So, we get,
⇒LHS=tan(2x−y)
RHS is also equal to tan(2x−y). So, we can write,
L.H.S.=R.H.S
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1.cos(A)+cos(B)=2cos(2A+B)cos(2A−B)
2.cos(A)−cos(B)=−2sin(2A+B)sin(2A−B)
3.sin(A)+sin(B)=2sin(2A+B)cos(2A−B)
4.sin(A)−sin(B)=2cos(2A+B)sin(2A−B)
5.sin(−x)=−sin(x)
6.cos(−x)=cos(x)
We must know the values of trigonometric functions at common angles. Adding π or multiples of π with the angle retains the ratio and adding 2π or odd multiples of 2π will change the ratio.