Solveeit Logo

Question

Question: Prove the following: \(\dfrac{\sin x-\sin 3x}{{{\sin }^{2}}x-{{\cos }^{2}}x}=2\sin x\)...

Prove the following:
sinxsin3xsin2xcos2x=2sinx\dfrac{\sin x-\sin 3x}{{{\sin }^{2}}x-{{\cos }^{2}}x}=2\sin x

Explanation

Solution

Hint:If you look carefully, the numerator of the L.H.S expression is in the form of sinCsinD\sin C-\sin D and the denominator of the L.H.S expression is in the form of cos2θsin2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta . So, apply the identity ofsinCsinD\sin C-\sin D and cos2θsin2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta in the numerator and denominator of L.H.S respectively and then solve.

Complete step-by-step answer:
We have to prove the following expression:
sinxsin3xsin2xcos2x=2sinx\dfrac{\sin x-\sin 3x}{{{\sin }^{2}}x-{{\cos }^{2}}x}=2\sin x
Solving L.H.S of the expression,
sinxsin3xsin2xcos2x\dfrac{\sin x-\sin 3x}{{{\sin }^{2}}x-{{\cos }^{2}}x}
The numerator of the above expression is in the form of sinCsinD\sin C-\sin D and we know that:
sinCsinD=2cos(C+D2)sin(CD2)\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)
Applying this formula in sinxsin3x\sin x-\sin 3x we get,
sinxsin3x=2cos2xsin(x)\sin x-\sin 3x=2\cos 2x\sin (-x)
Now, the denominator of the L.H.S expression is in the form of cos2θsin2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta and we know that:
cos2θsin2θ=cos2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta
Applying this formula in sin2xcos2x{{\sin }^{2}}x-{{\cos }^{2}}x we get,
sin2xcos2x=cos2x{{\sin }^{2}}x-{{\cos }^{2}}x=-\cos 2x
Substituting the value of sinxsin3x\sin x-\sin 3x and sin2xcos2x{{\sin }^{2}}x-{{\cos }^{2}}x in the L.H.S expression of the given question we get,
sinxsin3xsin2xcos2x\dfrac{\sin x-\sin 3x}{{{\sin }^{2}}x-{{\cos }^{2}}x}
=2cos2xsin(x)cos2x=\dfrac{2\cos 2x\sin (-x)}{-\cos 2x}
From the trigonometric properties we know that:
sin(x)=sinx\sin (-x)=-\sin x.
Now, we are going to substitute this value in the above expression and cos2x\cos 2x will be cancelled out from the numerator and the denominator of the above expression.
2sinx1 =2sinx \begin{aligned} & \dfrac{-2\sin x}{-1} \\\ & =2\sin x \\\ \end{aligned}
The answer we get from solving the L.H.S of the given expression is 2sinx2\sin x which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given expression.

Note: You can do the above proof by cross – multiplying the given equation:
sinxsin3xsin2xcos2x=2sinx\dfrac{\sin x-\sin 3x}{{{\sin }^{2}}x-{{\cos }^{2}}x}=2\sin x
sinxsin3x=2sinx(sin2xcos2x)\sin x-\sin 3x=2\sin x\left( {{\sin }^{2}}x-{{\cos }^{2}}x \right)
Multiplying -1 on both the sides we get,
sin3xsinx=2sinx(cos2xsin2x)\sin 3x-\sin x=2\sin x\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)…………. Eq. (1)
Solving R.H.S of the above equation:
2sinx(cos2xsin2x)2\sin x\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)
We know that cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x so using this relation in the above expression.
2sinxcos2x2\sin x\cos 2x
Now, solving R.H.S of the eq. (1) we get,
sin3xsinx\sin 3x-\sin x
Using the formula of sinCsinD\sin C-\sin D in the above equation we get,
sin3xsinx=2cos2xsin(x)\sin 3x-\sin x=2\cos 2x\sin (x)
The above simplification of L.H.S of eq. (1) has given the value 2cos2xsinx2\cos 2x\sin x and R.H.S we have solved above has given the value 2sinxcos2x2\sin x\cos 2x.
As you can see L.H.S = R.H.S. so we have proved.