Solveeit Logo

Question

Question: Prove the following \[\dfrac{\sin A-\cos A+1}{\sin A+\cos A-1}=\dfrac{1}{\sec A-\tan A}\]...

Prove the following
sinAcosA+1sinA+cosA1=1secAtanA\dfrac{\sin A-\cos A+1}{\sin A+\cos A-1}=\dfrac{1}{\sec A-\tan A}

Explanation

Solution

Hint:Consider the LHS of the equation given in the question. Now, replace 1 in the numerator or denominator by (sec2Atan2A)\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right) and use a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). Now, take all the common terms and cancel the like terms in the LHS to prove the desired result.

Complete step-by-step answer:
In this question, we have to prove that,
sinAcosA+1sinA+cosA1=1secAtanA\dfrac{\sin A-\cos A+1}{\sin A+\cos A-1}=\dfrac{1}{\sec A-\tan A}
Let us consider the LHS of the given equation.
LHS=sinAcosA+1sinA+cosA1LHS=\dfrac{\sin A-\cos A+1}{\sin A+\cos A-1}
By dividing the numerator and denominator by cos A in the above expression, we get,
LHS=sinAcosAcosAcosA+1cosAsinAcosA+cosAcosA1cosALHS=\dfrac{\dfrac{\sin A}{\cos A}-\dfrac{\cos A}{\cos A}+\dfrac{1}{\cos A}}{\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\cos A}-\dfrac{1}{\cos A}}
We know that, sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta and 1cosθ=secθ\dfrac{1}{\cos \theta }=\sec \theta . By using these in the above expression, we get,
LHS=tanA1+secAtanA+1secALHS=\dfrac{\tan A-1+\sec A}{\tan A+1-\sec A}
We know that,
sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1
So, by replacing 1 in the numerator of the above expression by sec2Atan2A{{\sec }^{2}}A-{{\tan }^{2}}A, we get,
LHS=(tanA+secA)(sec2Atan2A)(tanA+1secA)LHS=\dfrac{\left( \tan A+\sec A \right)-\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)}{\left( \tan A+1-\sec A \right)}
We know that, a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). By using this in the numerator of the above expression, we get,
LHS=(secA+tanA)[(secA+tanA)(secAtanA)](tanA+1secA)LHS=\dfrac{\left( \sec A+\tan A \right)-\left[ \left( \sec A+\tan A \right)\left( \sec A-\tan A \right) \right]}{\left( \tan A+1-\sec A \right)}
By taking out (sec A + tan A) common from the numerator in the above expression, we get,
LHS=(secA+tanA)[1(secAtanA)](tanA+1secA)LHS=\dfrac{\left( \sec A+\tan A \right)\left[ 1-\left( \sec A-\tan A \right) \right]}{\left( \tan A+1-\sec A \right)}
LHS=(secA+tanA)(1secA+tanA)(1secA+tanA)LHS=\dfrac{\left( \sec A+\tan A \right)\left( 1-\sec A+\tan A \right)}{\left( 1-\sec A+\tan A \right)}
Now, by canceling the like terms that is (1 – sec A + tan A) from the numerator and denominator of the above expression, we get,
LHS=(secA+tanA)LHS=\left( \sec A+\tan A \right)
By multiplying and diving (sec A – tan A) in the above expression, we get,
LHS=(secA+tanA)(secAtanA)(secAtanA)LHS=\dfrac{\left( \sec A+\tan A \right)\left( \sec A-\tan A \right)}{\left( \sec A-\tan A \right)}
By using (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}, we get,
LHS=sec2Atan2AsecAtanALHS=\dfrac{{{\sec }^{2}}A-{{\tan }^{2}}A}{\sec A-\tan A}
We know that, sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1. By using this, we get,
LHS=1secAtanA=RHSLHS=\dfrac{1}{\sec A-\tan A}=RHS
Hence proved

Note: In this question, students can easily prove the given equation by replacing 1 by sec2Atan2A{{\sec }^{2}}A-{{\tan }^{2}}A in the denominator as well but students must keep in mind that we only need to replace 1 either in the numerator or the denominator but not at both the places in order to prove the required result.