Solveeit Logo

Question

Question: Prove the following: \[\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left...

Prove the following:
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x

Explanation

Solution

Hint: In this question, consider the LHS and the formula for sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) and cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right). After that cancel the common terms to prove the desired result, that is to get LHS = RHS.
Complete step-by-step answer:
Here, we have to prove that
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x
Let us consider the LHS of the expression given in the question
E=(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)E=\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}
We know that, sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right). By using this in the above expression, we get,
E=2sin(7x+5x2).cos(7x5x2)+2sin(9x+3x2)cos(9x3x2)(cos7x+cos5x)+(cos9x+cos3x)E=\dfrac{2\sin \left( \dfrac{7x+5x}{2} \right).\cos \left( \dfrac{7x-5x}{2} \right)+2\sin \left( \dfrac{9x+3x}{2} \right)\cos \left( \dfrac{9x-3x}{2} \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}
By simplifying the above expression, we get,
E=2sin(6x).cos(x)+2sin(6x)cos(3x)(cos7x+cos5x)+(cos9x+cos3x)E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}
We know that cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right). By using this in the above expression, we get,
E=2sin(6x).cos(x)+2sin(6x)cos(3x)2cos(7x+5x2).cos(7x5x2)+2cos(9x+3x2).cos(9x3x2)E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{2\cos \left( \dfrac{7x+5x}{2} \right).\cos \left( \dfrac{7x-5x}{2} \right)+2\cos \left( \dfrac{9x+3x}{2} \right).\cos \left( \dfrac{9x-3x}{2} \right)}
By simplifying the above expression, we get,
E=2sin(6x).cos(x)+2sin(6x)cos(3x)2cos(6x).cos(x)+2cos(6x).cos(3x)E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{2\cos \left( 6x \right).\cos \left( x \right)+2\cos \left( 6x \right).\cos \left( 3x \right)}
By taking out 2 sin (6x) common from the numerator of the above expression, we get,
E=(2sin6x)[cosx+cos3x]2cos(6x)cosx+2cos(6x)cos(3x)E=\dfrac{\left( 2\sin 6x \right)\left[ \cos x+\cos 3x \right]}{2\cos \left( 6x \right)\cos x+2\cos \left( 6x \right)\cos \left( 3x \right)}
By taking out 2 cos (6x) common from the denominator of the above expression, we get,
E=(2sin6x)[cosx+cos3x](2cos6x)[cosx+cos3x]E=\dfrac{\left( 2\sin 6x \right)\left[ \cos x+\cos 3x \right]}{\left( 2\cos 6x \right)\left[ \cos x+\cos 3x \right]}
Now, by canceling the like terms of the above expression, we get,
E=sin6xcos6xE=\dfrac{\sin 6x}{\cos 6x}
We know that, sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta . By using this in the above expression, we get,
E=tan6xE=\tan 6x
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x

Note: In these types of questions, students often get confused between the formulas of sin C + sin D or sin C – sin D or cos C + cos D, etc. So, formulas for these expressions must be memorized properly. Also, students must try to club the terms such that we get, C+D2\dfrac{C+D}{2} and CD2\dfrac{C-D}{2} as a whole number and not fractional values. In other words, try to take C and D such that (C + D) and (C – D) are even multiples.