Solveeit Logo

Question

Question: Prove the following: \(\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x...

Prove the following:
cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)}={{\cot }^{2}}x

Explanation

Solution

Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas like cos(π+θ)=cosθ\cos \left( \pi +\theta \right)=-\cos \theta , sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta and cos(π2+θ)=sinθ\cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Complete step-by-step answer:
Given:
We have to prove the following equation:
cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)}={{\cot }^{2}}x
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
cos(π+θ)=cosθ............(1) cos(θ)=cosθ..................(2) sin(πθ)=sinθ...............(3) cos(π2+θ)=sinθ...........(4) cosθsinθ=cotθ.......................(5) \begin{aligned} & \cos \left( \pi +\theta \right)=-\cos \theta ............\left( 1 \right) \\\ & \cos \left( -\theta \right)=\cos \theta ..................\left( 2 \right) \\\ & \sin \left( \pi -\theta \right)=\sin \theta ...............\left( 3 \right) \\\ & \cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta ...........\left( 4 \right) \\\ & \dfrac{\cos \theta }{\sin \theta }=\cot \theta .......................\left( 5 \right) \\\ \end{aligned}
Now, we will use the above five formulas to simplify the term on the left-hand side.
On the left-hand side, we have cos(π+x)cos(x)sin(πx)cos(π2+x)\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)} .
Now, we will use the formula from the equation (1) to write cos(π+x)=cosx\cos \left( \pi +x \right)=-\cos x and formula from the equation (2) to write cos(x)=cosx\cos \left( -x \right)=\cos x in the term on the left-hand side. Then,
cos(π+x)cos(x)sin(πx)cos(π2+x) cosx×cosxsin(πx)cos(π2+x) cos2xsin(πx)cos(π2+x) \begin{aligned} & \dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)} \\\ & \Rightarrow \dfrac{-\cos x\times \cos x}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)} \\\ & \Rightarrow \dfrac{-{{\cos }^{2}}x}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)} \\\ \end{aligned}
Now, we will use the formula from the equation (3) to write sin(πx)=sinx\sin \left( \pi -x \right)=\sin x and formula from the equation (4) to write cos(π2+x)=sinx\cos \left( \dfrac{\pi }{2}+x \right)=-\sin x in the above expression. Then,
cos2xsin(πx)cos(π2+x) cos2xsinx×(sinx) cos2xsin2x (cosxsinx)2 \begin{aligned} & \dfrac{-{{\cos }^{2}}x}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)} \\\ & \Rightarrow \dfrac{-{{\cos }^{2}}x}{\sin x\times \left( -\sin x \right)} \\\ & \Rightarrow \dfrac{-{{\cos }^{2}}x}{-{{\sin }^{2}}x} \\\ & \Rightarrow {{\left( \dfrac{\cos x}{\sin x} \right)}^{2}} \\\ \end{aligned}
Now, we will use the formula from the equation (5) to write cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x in the above expression. Then,
(cosxsinx)2 (cotx)2 cot2x \begin{aligned} & {{\left( \dfrac{\cos x}{\sin x} \right)}^{2}} \\\ & \Rightarrow {{\left( \cot x \right)}^{2}} \\\ & \Rightarrow {{\cot }^{2}}x \\\ \end{aligned}
Now, from the above result, we conclude that the value of the expression cos(π+x)cos(x)sin(πx)cos(π2+x)\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)} will be equal to the value of the expression cot2x{{\cot }^{2}}x . Then,
cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)}={{\cot }^{2}}x
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x\dfrac{\cos \left( \pi +x \right)\cos \left( -x \right)}{\sin \left( \pi -x \right)\cos \left( \dfrac{\pi }{2}+x \right)}={{\cot }^{2}}x .
Hence, proved.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result. After that, we should apply trigonometric formulas like cos(π+θ)=cosθ\cos \left( \pi +\theta \right)=-\cos \theta and sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.