Solveeit Logo

Question

Question: Prove the following: \(\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\)...

Prove the following:
cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x

Explanation

Solution

Hint:To prove the above expression, solve the L.H.S of the expression. In the numerator of the L.H.S, use the identity for cosC+cosD\cos C+\cos D in cos4x+cos2x\cos 4x+\cos 2x and in the denominator of L.H.S, use the identity sinC+sinD\sin C+\sin D in sin4x+sin2x\sin 4x+\sin 2x. Then simplify the expression.

Complete step-by-step answer:
The expression given in the question is:
cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x
Now, we are going to simplify the L.H.S of the above equation.
cos4x+cos3x+cos2xsin4x+sin3x+sin2x\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}
The numerator of the above expression is in the form of cosC+cosD\cos C+\cos D so we can apply the identity of cosC+cosD\cos C+\cos D in cos4x+cos2x\cos 4x+\cos 2x.
cos4x+cos2x=2cos(4x+2x2)cos(4x2x2) cos4x+cos2x=2cos(3x)cos(x) \begin{aligned} & \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right) \\\ & \Rightarrow \cos 4x+\cos 2x=2\cos \left( 3x \right)\cos \left( x \right) \\\ \end{aligned}
If you can see the denominator of the expression, sin4x+sin2x\sin 4x+\sin 2x is in the form of sinC+sinD\sin C+\sin D so we can apply the identity of sinC+sinD\sin C+\sin D in the expression sin4x+sin2x\sin 4x+\sin 2x.
sin4x+sin2x=2sin(4x+2x2)cos(4x2x2) sin4x+sin2x=2sin(3x)cos(x) \begin{aligned} & \sin 4x+\sin 2x=2\sin \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right) \\\ & \Rightarrow \sin 4x+\sin 2x=2\sin \left( 3x \right)\cos \left( x \right) \\\ \end{aligned}
Substituting the value of expressions sin4x+sin2x&cos4x+cos2x\sin 4x+\sin 2x\And \cos 4x+\cos 2x in the L.H.S expression given in the question we get,
cos4x+cos3x+cos2xsin4x+sin3x+sin2x =2cos3xcosx+cos3x2sin3xcosx+sin3x =cos3x(2cosx+1)sin3x(2cosx+1) \begin{aligned} & \dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x} \\\ & =\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\\ & =\dfrac{\cos 3x(2\cos x+1)}{\sin 3x(2\cos x+1)} \\\ \end{aligned}
In the above expression 2cosx+12\cos x+1 will be cancelled out from the numerator and the denominator.
cos3xsin3x =cot3x \begin{aligned} & \dfrac{\cos 3x}{\sin 3x} \\\ & =\cot 3x \\\ \end{aligned}
From the above calculation, the result of L.H.S in the given expression has come out to be cot3x\cot 3x which is equal to R.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given expression.

Note: You might be wondering why we have applied cosC+cosD\cos C+\cos D for cos4x+cos2x\cos 4x+\cos 2x in the numerator and sinC+sinD\sin C+\sin D for sin4x+sin2x\sin 4x+\sin 2x in the denominator because when we takecos4x+cos2x\cos 4x+\cos 2x then after applying the identity then expression converts to cos3x\cos 3x. Similarly, in the denominator we have got sin3x\sin 3x and the R.H.S of the given expression contains cot3x\cot 3x. So, to equate both the sides, we have selectively taken the angles 4x4x and 2x2x of cosine and sine in the numerator and denominator respectively.