Solveeit Logo

Question

Question: Prove the following: \[\dfrac{1-\sin A\cos A}{\cos A\left( \sec A-\operatorname{cosec}A \right)}.\...

Prove the following:
1sinAcosAcosA(secAcosecA).sin2Acos2Asin3A+cos3A=sinA\dfrac{1-\sin A\cos A}{\cos A\left( \sec A-\operatorname{cosec}A \right)}.\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A}{{{\sin }^{3}}A+{{\cos }^{3}}A}=\sin A

Explanation

Solution

Hint: To prove this expression, we should know a few trigonometric identities like sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1, secA=1cosA\sec A=\dfrac{1}{\cos A} and cosecA=1sinA\operatorname{cosec}A=\dfrac{1}{\sin A}. Also, we should know a few algebraic formulas like a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right), a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right). By using these formulas, we can prove the desired result.

Complete step-by-step solution -
In this question, we have to prove that
1sinAcosAcosA(secAcosecA).sin2Acos2Asin3A+cos3A=sinA\dfrac{1-\sin A\cos A}{\cos A\left( \sec A-\operatorname{cosec}A \right)}.\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A}{{{\sin }^{3}}A+{{\cos }^{3}}A}=\sin A
To prove this expression, we will first consider the left hand side of the expression. So, we can write it as
LHS=1sinAcosAcosA(secAcosecA).sin2Acos2Asin3A+cos3ALHS=\dfrac{1-\sin A\cos A}{\cos A\left( \sec A-\operatorname{cosec}A \right)}.\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A}{{{\sin }^{3}}A+{{\cos }^{3}}A}
Now, we know that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). So, we can write the LHS as,
LHS=1sinAcosAcosA(secAcosecA).(sinAcosA)(sinA+cosA)sin3A+cos3ALHS=\dfrac{1-\sin A\cos A}{\cos A\left( \sec A-\operatorname{cosec}A \right)}.\dfrac{\left( \sin A-\cos A \right)\left( \sin A+\cos A \right)}{{{\sin }^{3}}A+{{\cos }^{3}}A}
Now, we also know that a3+b3{{a}^{3}}+{{b}^{3}} can be represented as (a+b)(a2+b2ab)\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right). So, we can write LHS as,
LHS=1sinAcosAcosA(secAcosecA).(sinAcosA)(sinA+cosA)(sinA+cosA)(sin2A+cos2AsinAcosA)LHS=\dfrac{1-\sin A\cos A}{\cos A\left( \sec A-\operatorname{cosec}A \right)}.\dfrac{\left( \sin A-\cos A \right)\left( \sin A+\cos A \right)}{\left( \sin A+\cos A \right)\left( {{\sin }^{2}}A+{{\cos }^{2}}A-\sin A\cos A \right)}
Now, we can see that (sin A + cos A) is common in both numerator and denominator of LHS. So, after canceling them out, we will get the LHS as,
LHS=(1sinAcosA)(sinAcosA)cosA(secAcosecA)(sin2A+cos2AsinAcosA)LHS=\dfrac{\left( 1-\sin A\cos A \right)\left( \sin A-\cos A \right)}{\cos A\left( \sec A-\operatorname{cosec}A \right)\left( {{\sin }^{2}}A+{{\cos }^{2}}A-\sin A\cos A \right)}
Now, we know that sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. So, we can write
sin2A+cos2AsinAcosA=1sinAcosA{{\sin }^{2}}A+{{\cos }^{2}}A-\sin A\cos A=1-\sin A\cos A
Therefore, we can write the LHS as,
LHS=(1sinAcosA)(sinAcosA)cosA(secAcosecA)(1sinAcosA)LHS=\dfrac{\left( 1-\sin A\cos A \right)\left( \sin A-\cos A \right)}{\cos A\left( \sec A-\operatorname{cosec}A \right)\left( 1-\sin A\cos A \right)}
Now, we can see that (1 – sin A cos A) is common in both the numerator and denominator. So, we can cancel them. Therefore, we will get,
LHS=(sinAcosA)cosA(secAcosecA)LHS=\dfrac{\left( \sin A-\cos A \right)}{\cos A\left( \sec A-\operatorname{cosec}A \right)}
Now, we know that cosA=1secA\cos A=\dfrac{1}{\sec A} and sinA=1cosecA\sin A=\dfrac{1}{\operatorname{cosec}A}. So we can write it as secA=1cosA\sec A=\dfrac{1}{\cos A} and cosecA=1sinA\operatorname{cosec}A=\dfrac{1}{\sin A}. Therefore, we will get LHS as,
LHS=sinAcosAcosA(1cosA1sinA)LHS=\dfrac{\sin A-\cos A}{\cos A\left( \dfrac{1}{\cos A}-\dfrac{1}{\sin A} \right)}
Now, we will take the LCM of the term in the denominator. So, we will get,
LHS=sinAcosAcosA(sinAcosAsinAcosA)LHS=\dfrac{\sin A-\cos A}{\cos A\left( \dfrac{\sin A-\cos A}{\sin A\cos A} \right)}
LHS=(sinAcosA)(sinAcosA)(cosA)(sinAcosA)LHS=\dfrac{\left( \sin A-\cos A \right)\left( \sin A\cos A \right)}{\left( \cos A \right)\left( \sin A-\cos A \right)}
Now, we can see that (cos A) and (sin A – cos A) are common in both the numerator and denominator. So, we cancel them. Therefore, we will get LHS as,
LHS = sin A
LHS = RHS
Hence proved.

Note: The possible mistakes one can make while proving the desired result is either a calculation mistake or by putting the wrong sign in the formula. And there are also possibilities that one might get confused with the question. So, solve the question carefully.