Question
Question: Prove the following: \(\cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x=1\)...
Prove the following:
cotxcot2x−cot2xcot3x−cot3xcotx=1
Solution
Hint:In the L.H.S of the expression, take cot3x as common from cot2xcot3x−cot3xcotx. After taking cot3x as common, you will leave with cot2x+cotx. Now, write cot3x as cot(2x+x) then use the identity of cot(A+B) on cot(2x+x) then simplify.
Complete step-by-step answer:
We have to prove the following expression,
cotxcot2x−cot2xcot3x−cot3xcotx=1
We are going to simplify the L.H.S of the above equation.
cotxcot2x−cot2xcot3x−cot3xcotx=cotxcot2x−cot3x(cot2x+cotx)
Now, writing cot3x as cot(2x+x) in the above expression we get,
cotxcot2x−cot(2x+x)(cot2x+cotx)
Now, applying cot(A+B) identity in cot(2x+x) we get,
cot(A+B)=cotA+cotBcotAcotB−1cot(2x+x)=cot2x+cotxcot2xcotx−1
cotxcot2x−cot(2x+x)(cot2x+cotx)=cotxcot2x−(cot2x+cotxcot2xcotx−1)(cot2x+cotx)
From the above expression, you can see that cot2x+cotx will be cancelled out from the numerator and the denominator. So, the remaining expression will look like:
cotxcot2x−(cot2xcotx−1)=cotxcot2x−cot2xcotx+1
In the above expression cotxcot2x will be cancelled out and the answer we get is:
1
The simplification of the L.H.S of the given expression yields 1 which is equal to R.H.S.
Hence, we have proved L.H.S = R.H.S of the given expression.
Note: The equation given in the question is:
cotxcot2x−cot2xcot3x−cot3xcotx=1
From the L.H.S of the above equation, we can also take cot2x as common fromcotxcot2x−cot2xcot3x and then write cot2x as cot(3x−x) and apply the identity of cot(A−B)on cot(3x−x) then also the simplification of L.H.S will give you 1.