Solveeit Logo

Question

Question: Prove the following: \(\cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x=1\)...

Prove the following:
cotxcot2xcot2xcot3xcot3xcotx=1\cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x=1

Explanation

Solution

Hint:In the L.H.S of the expression, take cot3x\cot 3x as common from cot2xcot3xcot3xcotx\cot 2x\cot 3x-\cot 3x\cot x. After taking cot3x\cot 3x as common, you will leave with cot2x+cotx\cot 2x+\cot x. Now, write cot3x\cot 3x as cot(2x+x)\cot \left( 2x+x \right) then use the identity of cot(A+B)\cot \left( A+B \right) on cot(2x+x)\cot \left( 2x+x \right) then simplify.

Complete step-by-step answer:
We have to prove the following expression,
cotxcot2xcot2xcot3xcot3xcotx=1\cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x=1
We are going to simplify the L.H.S of the above equation.
cotxcot2xcot2xcot3xcot3xcotx =cotxcot2xcot3x(cot2x+cotx) \begin{aligned} & \cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x \\\ & =\cot x\cot 2x-\cot 3x(\cot 2x+\cot x) \\\ \end{aligned}
Now, writing cot3x\cot 3x as cot(2x+x)\cot \left( 2x+x \right) in the above expression we get,
cotxcot2xcot(2x+x)(cot2x+cotx)\cot x\cot 2x-\cot (2x+x)(\cot 2x+\cot x)
Now, applying cot(A+B)\cot \left( A+B \right) identity in cot(2x+x)\cot \left( 2x+x \right) we get,
cot(A+B)=cotAcotB1cotA+cotB cot(2x+x)=cot2xcotx1cot2x+cotx \begin{aligned} & \cot (A+B)=\dfrac{\cot A\cot B-1}{\cot A+\cot B} \\\ & \cot (2x+x)=\dfrac{\cot 2x\cot x-1}{\cot 2x+\cot x} \\\ \end{aligned}
cotxcot2xcot(2x+x)(cot2x+cotx) =cotxcot2x(cot2xcotx1cot2x+cotx)(cot2x+cotx) \begin{aligned} & \cot x\cot 2x-\cot (2x+x)(\cot 2x+\cot x) \\\ & =\cot x\cot 2x-\left( \dfrac{\cot 2x\cot x-1}{\cot 2x+\cot x} \right)(\cot 2x+\cot x) \\\ \end{aligned}
From the above expression, you can see that cot2x+cotx\cot 2x+\cot x will be cancelled out from the numerator and the denominator. So, the remaining expression will look like:
cotxcot2x(cot2xcotx1) =cotxcot2xcot2xcotx+1 \begin{aligned} & \cot x\cot 2x-\left( \cot 2x\cot x-1 \right) \\\ & =\cot x\cot 2x-\cot 2x\cot x+1 \\\ \end{aligned}
In the above expression cotxcot2x\cot x\cot 2x will be cancelled out and the answer we get is:
1
The simplification of the L.H.S of the given expression yields 1 which is equal to R.H.S.
Hence, we have proved L.H.S = R.H.S of the given expression.

Note: The equation given in the question is:
cotxcot2xcot2xcot3xcot3xcotx=1\cot x\cot 2x-\cot 2x\cot 3x-\cot 3x\cot x=1
From the L.H.S of the above equation, we can also take cot2x\cot 2x as common fromcotxcot2xcot2xcot3x\cot x\cot 2x-\cot 2x\cot 3x and then write cot2x\cot 2x as cot(3xx)\cot \left( 3x-x \right) and apply the identity of cot(AB)\cot \left( A-B \right)on cot(3xx)\cot \left( 3x-x \right) then also the simplification of L.H.S will give you 1.

& \cot 2x\left( \cot x-\cot 3x \right)-\cot 3x\cot x \\\ & =\cot (3x-x)\left( \cot x-\cot 3x \right)-\cot 3x\cot x \\\ & =\dfrac{1+\cot 3x\cot x}{\cot x-\cot 3x}\left( \cot x-\cot 3x \right)-\cot 3x\cot x \\\ \end{aligned}$$ In the above expression $\cot x-\cot 3x$ will be cancelled out and the remaining expression will look like: $\begin{aligned} & 1+\cot 3x\cot x-\cot 3x\cot x \\\ & =1 \\\ \end{aligned}$ Hence, we have simplified the L.H.S of the given expression to 1.