Solveeit Logo

Question

Question: Prove the following: \(\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-...

Prove the following:
cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right)=\sin \left( x+y \right)

Explanation

Solution

Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas like cosAcosBsinAsinB=cos(A+B)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) and cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Complete step-by-step answer:

Given:
We have to prove the following equation:
cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right)=\sin \left( x+y \right)
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
cosAcosBsinAsinB=cos(A+B).....................(1) cos(π2θ)=sinθ................................................(2) \begin{aligned} & \cos A\cos B-\sin A\sin B=\cos \left( A+B \right).....................\left( 1 \right) \\\ & \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta ................................................\left( 2 \right) \\\ \end{aligned}
Now, we will use the above two formulas to simplify the term on the left-hand side.
On the left-hand side, we have cos(π4x)cos(π4y)sin(π4x)sin(π4y)\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right) .
Now, let A=π4xA=\dfrac{\pi }{4}-x and B=π4yB=\dfrac{\pi }{4}-y . Then,
cos(π4x)cos(π4y)sin(π4x)sin(π4y) cosAcosBsinAsinB \begin{aligned} & \cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right) \\\ & \Rightarrow \cos A\cos B-\sin A\sin B \\\ \end{aligned}
Now, we will use the formula from the equation (1) to write cosAcosBsinAsinB=cos(A+B)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) in the above expression. Then,
cosAcosBsinAsinB cos(A+B) \begin{aligned} & \cos A\cos B-\sin A\sin B \\\ & \Rightarrow \cos \left( A+B \right) \\\ \end{aligned}
Now, as per our assumption A=π4xA=\dfrac{\pi }{4}-x and B=π4yB=\dfrac{\pi }{4}-y . So, we can put A=π4xA=\dfrac{\pi }{4}-x and B=π4yB=\dfrac{\pi }{4}-y in the above expression. Then,
cos(A+B) cos(π4x+π4y) cos(π4+π4xy) cos(π2(x+y)) \begin{aligned} & \cos \left( A+B \right) \\\ & \Rightarrow \cos \left( \dfrac{\pi }{4}-x+\dfrac{\pi }{4}-y \right) \\\ & \Rightarrow \cos \left( \dfrac{\pi }{4}+\dfrac{\pi }{4}-x-y \right) \\\ & \Rightarrow \cos \left( \dfrac{\pi }{2}-\left( x+y \right) \right) \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write cos(π2(x+y))=sin(x+y)\cos \left( \dfrac{\pi }{2}-\left( x+y \right) \right)=\sin \left( x+y \right) in the above expression. Then,
cos(π2(x+y)) sin(x+y) \begin{aligned} & \cos \left( \dfrac{\pi }{2}-\left( x+y \right) \right) \\\ & \Rightarrow \sin \left( x+y \right) \\\ \end{aligned}
Now, from the above result, we conclude that the value of the expression cos(π4x)cos(π4y)sin(π4x)sin(π4y)\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right) will be equal to the value of the expression sin(x+y)\sin \left( x+y \right) . Then,
cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right)=\sin \left( x+y \right)
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( \dfrac{\pi }{4}-x \right)\cos \left( \dfrac{\pi }{4}-y \right)-\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}-y \right)=\sin \left( x+y \right) .
Hence, proved.

Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like cosAcosBsinAsinB=cos(A+B)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.