Question
Question: Prove the following: \(\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} ...
Prove the following:
cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)=sin(x+y)
Solution
Note that, cosAcosB−sinAsinB=cos(A+B)
Again, cos(2π−θ)=sinθ
Therefore take the left hand side and use these two formulae to proceed.
And on solving we will arrive at our desired result.
Complete step-by-step answer:
Given to prove cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)=sin(x+y),
We know that, cosAcosB−sinAsinB=cos(A+B)
Now, left hand side is given by,
=cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)
Using, cosAcosB−sinAsinB=cos(A+B), we get,
=cos(4π−x+4π−y)
On simplification we get,
=cos(2π−(x+y))
Using, cos(2π−θ)=sinθ, we get,
=sin(x+y)
= Right hand side
Therefore, cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)=sin(x+y) (proved).
Note: Note the following important formulae:
1.sin(2π−x)=cosx , tan(2π−x)=2.cotx , cosec(2π−x)=secx
3.sinAcosB+cosAsinB=sin(A+B)
4.sinAcosB−cosAsinB=sin(A−B)
5.cosAcosB−sinAsinB=cos(A+B)
6.cosAcosB+sinAsinB=cos(A−B)
7.tan(A+B)=1−tanAtanBtanA+tanB
8.tan(A−B)=1+tanAtanBtanA−tanB