Solveeit Logo

Question

Question: Prove the following: \(\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} ...

Prove the following:
cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)

Explanation

Solution

Note that, cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)
Again, cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta
Therefore take the left hand side and use these two formulae to proceed.
And on solving we will arrive at our desired result.

Complete step-by-step answer:
Given to prove cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right),
We know that, cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)
Now, left hand side is given by,
=cos(π4x)cos(π4y)sin(π4x)sin(π4y)= \cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right)
Using, cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right), we get,
=cos(π4x+π4y)= \cos \left( {\dfrac{\pi }{4} - x + \dfrac{\pi }{4} - y} \right)
On simplification we get,
=cos(π2(x+y))= \cos \left( {\dfrac{\pi }{2} - \left( {x + y} \right)} \right)
Using, cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta , we get,
=sin(x+y)= \sin \left( {x + y} \right)
= Right hand side
Therefore, cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right) (proved).

Note: Note the following important formulae:
1.sin(π2x)=cosx , tan(π2x)=2.cotx , cosec(π2x)=secx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x{\text{ , tan}}\left( {\dfrac{\pi }{2} - x} \right) = 2.\cot x{\text{ , cosec}}\left( {\dfrac{\pi }{2} - x} \right) = \sec x
3.sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)
4.sinAcosBcosAsinB=sin(AB)\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)
5.cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)
6.cosAcosB+sinAsinB=cos(AB)\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)
7.tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
8.tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}