Solveeit Logo

Question

Question: Prove the following: \(\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}...

Prove the following:
cos(3π4+x)cos(3π4x)=2sinx\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x

Explanation

Solution

We can expand the LHS of the given equation using the trigonometric identities cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)and cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right). On simplification and further calculations, we will obtain the RHS of the equation. We can say the equation is true when LHS=RHSLHS = RHS

Complete step-by-step answer:
We need to prove that cos(3π4+x)cos(3π4x)=2sinx\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x
Let us look at the LHS.
LHS=cos(3π4+x)cos(3π4x)LHS = \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right)
It is of the form cos(A+B)cos(AB)\cos \left( {A + B} \right) - \cos \left( {A - B} \right) .
We know that cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)and cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)
cos(A+B)cos(AB)=cos(A)cos(B)sin(A)sin(B)(cos(A)cos(B)+sin(A)sin(B))\Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right) - \left( {\cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)} \right)
On further simplification, we get,
cos(A+B)cos(AB)=2sin(A)sin(B)\Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)
We can substitute the values,
cos(3π4+x)cos(3π4x)=2sin(3π4)sinx\Rightarrow \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x
Then the LHS will become,
LHS=2sin(3π4)sinx\Rightarrow LHS = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x
We know that sin3π4=12\sin \dfrac{{3\pi }}{4} = \dfrac{1}{{\sqrt 2 }}. On substituting, we get,
LHS=2(12)sinx\Rightarrow LHS = - 2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\sin x
On simplification,
LHS=2sinx\Rightarrow LHS = - \sqrt 2 \sin x
RHS is also equal to2sinx - \sqrt 2 \sin x. So, we can write,
LHS=RHSLHS = RHS.
Hence the equation is proved.

Note: We must be familiar with the following trigonometric identities used in this problem.
1. cos(A±B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)
2.cot(A±B)=cotAcotB1cotB±cotA\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}
3.cos(A+B)cos(AB)=2sin(A)sin(B)\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)
4.cos(x)=cos(x)\cos \left( { - x} \right) = \cos \left( x \right)