Solveeit Logo

Question

Question: Prove the following: \(\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \righ...

Prove the following:
cos(3π4+x)cos(3π4x)=2sinx\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x

Explanation

Solution

Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas of cos(A+B)\cos \left( A+B \right) , cos(AB)\cos \left( A-B \right) and sin(πθ)\sin \left( \pi -\theta \right) for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Complete step-by-step answer:

Given:
We have to prove the following equation:
cos(3π4+x)cos(3π4x)=2sinx\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
cos(A+B)=cosAcosBsinAsinB.............(1) cos(AB)=cosAcosB+sinAsinB.............(2) sin(πθ)=sinθ.............................................(3) sinπ4=12......................................................(4) \begin{aligned} & \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B.............\left( 1 \right) \\\ & \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B.............\left( 2 \right) \\\ & \sin \left( \pi -\theta \right)=\sin \theta .............................................\left( 3 \right) \\\ & \sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}......................................................\left( 4 \right) \\\ \end{aligned}
Now, we will use the above four formulas to simplify the term on the left-hand side.
On the left-hand side, we have cos(3π4+x)cos(3π4x)\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right) .
Now, we will use the formula from the equation (1) to write cos(3π4+x)=cos3π4cosxsin3π4sinx\cos \left( \dfrac{3\pi }{4}+x \right)=\cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x and formula from the equation (2) to write cos(3π4x)=cos3π4cosx+sin3π4sinx\cos \left( \dfrac{3\pi }{4}-x \right)=\cos \dfrac{3\pi }{4}\cos x+\sin \dfrac{3\pi }{4}\sin x in the term on the left-hand side. Then,
cos(3π4+x)cos(3π4x) (cos3π4cosxsin3π4sinx)(cos3π4cosx+sin3π4sinx) cos3π4cosxsin3π4sinxcos3π4cosxsin3π4sinx 2sin3π4sinx \begin{aligned} & \cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right) \\\ & \Rightarrow \left( \cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x \right)-\left( \cos \dfrac{3\pi }{4}\cos x+\sin \dfrac{3\pi }{4}\sin x \right) \\\ & \Rightarrow \cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x-\cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x \\\ & \Rightarrow -2\sin \dfrac{3\pi }{4}\sin x \\\ \end{aligned}
Now, we will write sin3π4=sin(ππ4)\sin \dfrac{3\pi }{4}=\sin \left( \pi -\dfrac{\pi }{4} \right) in the above expression. Then,
2sin3π4sinx 2sin(ππ4)sinx \begin{aligned} & -2\sin \dfrac{3\pi }{4}\sin x \\\ & \Rightarrow -2\sin \left( \pi -\dfrac{\pi }{4} \right)\sin x \\\ \end{aligned}
Now, we will use the formula from the equation (3) to write sin(ππ4)=sinπ4\sin \left( \pi -\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4} in the above expression. Then,
2sin(ππ4)sinx 2sinπ4sinx \begin{aligned} & -2\sin \left( \pi -\dfrac{\pi }{4} \right)\sin x \\\ & \Rightarrow -2\sin \dfrac{\pi }{4}\sin x \\\ \end{aligned}
Now, we will use the formula from the equation (4) to write sinπ4=12\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} in the above expression. Then,
2sinπ4sinx 2×12×sinx 2sinx \begin{aligned} & -2\sin \dfrac{\pi }{4}\sin x \\\ & \Rightarrow -2\times \dfrac{1}{\sqrt{2}}\times \sin x \\\ & \Rightarrow -\sqrt{2}\sin x \\\ \end{aligned}
Now, from the above result, we conclude that the value of the expression cos(3π4+x)cos(3π4x)\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right) will be equal to the value of the expression 2sinx-\sqrt{2}\sin x . Then,
cos(3π4+x)cos(3π4x)=2sinx\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, cos(3π4+x)cos(3π4x)=2sinx\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x .
Hence, proved.

Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas of cos(A+B)\cos \left( A+B \right) and cos(AB)\cos \left( A-B \right) correctly. Moreover, we could have proved the result by applying the formula cosCcosD=2sin(C+D2)sin(CD2)\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right) to write cos(3π4+x)cos(3π4x)=2sin3π4sinx\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-2\sin \dfrac{3\pi }{4}\sin x directly.