Solveeit Logo

Question

Question: Prove the following: \(\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\...

Prove the following:
cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]=1\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right] = 1

Explanation

Solution

We can take each of the terms in the LHS and simplify them. We can simplify the terms using the equations cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)and cot(AB)=cotAcotB+1cotBcotA\cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}. We can say that the equation is true when LHS=RHSLHS = RHS

Complete step-by-step answer:
We need to provecos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]=1\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right] = 1 .
We can simplify the terms in the LHS of the equation we need to prove.
We can take the 1st term, cos(3π2+x)\cos \left( {\dfrac{{3\pi }}{2} + x} \right)
We can use the trigonometric identity, cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right).
We can substitute the values,
cos(3π2+x)=cos(3π2)cos(x)sin(3π2)sin(x)\Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right)\cos \left( x \right) - \sin \left( {\dfrac{{3\pi }}{2}} \right)\sin \left( x \right)
We know that cos(3π2)=0\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0and sin(3π2)=1\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1. On substituting,
cos(3π2+x)=0cos(x)(1)sin(x)\Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = 0\cos \left( x \right) - \left( { - 1} \right)\sin \left( x \right)
On simplification,
cos(3π2+x)=sin(x)\Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = \sin \left( x \right) … (1)
We can take the 2nd term, cos(2π+x)\cos \left( {2\pi + x} \right)
We know that trigonometric functions are periodic and repeat the same values after the interval of 2π2\pi .
cos(2π+x)=cos(x)\cos \left( {2\pi + x} \right) = \cos \left( x \right) .. (2)
Now we can take the 3rd term, cot(3π2x)\cot \left( {\dfrac{{3\pi }}{2} - x} \right),
We use the identity cot(AB)=cotAcotB+1cotBcotA\cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}
We can substitute the values
cot(3π2x)=cot3π2cotx+1cotxcot3π2\Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{\cot \dfrac{{3\pi }}{2}\cot x + 1}}{{\cot x - \cot \dfrac{{3\pi }}{2}}}
We know that cot(3π2)=0\cot \left( {\dfrac{{3\pi }}{2}} \right) = 0. So, we get,
cot(3π2x)=0×cotx+1cotx0\Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{0 \times \cot x + 1}}{{\cot x - 0}}
On simplification,
cot(3π2x)=1cotx\Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{1}{{\cot x}}
We know that cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}.
cot(3π2x)=sinxcosx\Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{\sin x}}{{\cos x}} … (3)
We can take the term, cot(2π+x)\cot \left( {2\pi + x} \right)
We know that trigonometric functions are periodic and repeat the same values after the interval of 2π2\pi .
cot(2π+x)=cot(x)\Rightarrow \cot \left( {2\pi + x} \right) = \cot \left( x \right)
We know that cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}.
cot(2π+x)=cosxsinx\Rightarrow \cot \left( {2\pi + x} \right) = \dfrac{{\cos x}}{{\sin x}}… (4)
Now we can take the LHS,
LHS=cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]LHS = \cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right]
We can substitute equation (1), (2), (3) and (4) in the LHS,
LHS=sin(x)cos(x)[sinxcosx+cosxsinx]\Rightarrow LHS = \sin \left( x \right)\cos \left( x \right)\left[ {\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}} \right]
After multiplication and simplification, we get,
LHS=sin2xcosxcosx+cos2xsinxsinx=sin2x+cos2x\Rightarrow LHS = \dfrac{{{{\sin }^2}x\cos x}}{{\cos x}} + \dfrac{{{{\cos }^2}x\sin x}}{{\sin x}} = {\sin ^2}x + {\cos ^2}x
We know that, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1.
LHS=1\Rightarrow LHS = 1.
RHS is also equal to 1. So, we can write,
LHS=RHSLHS = RHS.
Hence the equation is proved.

Note: We must be familiar with the following trigonometric identities used in this problem.
1. cos(A±B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)
2.cot(A±B)=cotAcotB1cotB±cotA\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}
3.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
4.cos(2π+x)=cos(x)\cos \left( {2\pi + x} \right) = \cos \left( x \right)