Question
Question: Prove the following: \(\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\...
Prove the following:
cos(23π+x)cos(2π+x)[cot(23π−x)+cot(2π+x)]=1
Solution
We can take each of the terms in the LHS and simplify them. We can simplify the terms using the equations cos(A+B)=cos(A)cos(B)−sin(A)sin(B)and cot(A−B)=cotB−cotAcotAcotB+1. We can say that the equation is true when LHS=RHS
Complete step-by-step answer:
We need to provecos(23π+x)cos(2π+x)[cot(23π−x)+cot(2π+x)]=1 .
We can simplify the terms in the LHS of the equation we need to prove.
We can take the 1st term, cos(23π+x)
We can use the trigonometric identity, cos(A+B)=cos(A)cos(B)−sin(A)sin(B).
We can substitute the values,
⇒cos(23π+x)=cos(23π)cos(x)−sin(23π)sin(x)
We know that cos(23π)=0and sin(23π)=−1. On substituting,
⇒cos(23π+x)=0cos(x)−(−1)sin(x)
On simplification,
⇒cos(23π+x)=sin(x) … (1)
We can take the 2nd term, cos(2π+x)
We know that trigonometric functions are periodic and repeat the same values after the interval of 2π.
cos(2π+x)=cos(x) .. (2)
Now we can take the 3rd term, cot(23π−x),
We use the identity cot(A−B)=cotB−cotAcotAcotB+1
We can substitute the values
⇒cot(23π−x)=cotx−cot23πcot23πcotx+1
We know that cot(23π)=0. So, we get,
⇒cot(23π−x)=cotx−00×cotx+1
On simplification,
⇒cot(23π−x)=cotx1
We know that cotx=sinxcosx.
⇒cot(23π−x)=cosxsinx … (3)
We can take the term, cot(2π+x)
We know that trigonometric functions are periodic and repeat the same values after the interval of 2π.
⇒cot(2π+x)=cot(x)
We know that cotx=sinxcosx.
⇒cot(2π+x)=sinxcosx… (4)
Now we can take the LHS,
LHS=cos(23π+x)cos(2π+x)[cot(23π−x)+cot(2π+x)]
We can substitute equation (1), (2), (3) and (4) in the LHS,
⇒LHS=sin(x)cos(x)[cosxsinx+sinxcosx]
After multiplication and simplification, we get,
⇒LHS=cosxsin2xcosx+sinxcos2xsinx=sin2x+cos2x
We know that, sin2x+cos2x=1.
⇒LHS=1.
RHS is also equal to 1. So, we can write,
LHS=RHS.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. cos(A±B)=cos(A)cos(B)∓sin(A)sin(B)
2.cot(A±B)=cotB±cotAcotAcotB∓1
3.sin2x+cos2x=1
4.cos(2π+x)=cos(x)