Solveeit Logo

Question

Question: Prove the following: \({\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x\)...

Prove the following:
cos22xcos26x=sin4xsin8x{\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x

Explanation

Solution

We can take the LHS of the given equation and factorize it using the equation a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right). Then we can simplify it using the trigonometric identities cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)andcos(A)cos(B)=2sin(A+B2)sin(AB2)\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right). On simplification and further calculations, we will obtain the RHS of the equation. When LHS=RHSLHS = RHS we can say that the given equation is correct.

Complete step by step Answer:

We need to prove that cos22xcos26x=sin4xsin8x{\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x
Let us look at the LHS.
LHS=cos22xcos26xLHS = {\cos ^2}2x - {\cos ^2}6x
It is of the form a2b2{a^2} - {b^2}
We know that a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
We can substitute the values,
cos22xcos26x=(cos2x+cos6x)(cos2xcos6x)\Rightarrow {\cos ^2}2x - {\cos ^2}6x = \left( {\cos 2x + \cos 6x} \right)\left( {\cos 2x - \cos 6x} \right)
Then the LHS becomes,
LHS=(cos2x+cos6x)(cos2xcos6x)\Rightarrow LHS = \left( {\cos 2x + \cos 6x} \right)\left( {\cos 2x - \cos 6x} \right) … (1)
We know that cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
We can substitute the values,
(cos2x+cos6x)=2cos(2x+6x2)cos(2x6x2)\Rightarrow \left( {\cos 2x + \cos 6x} \right) = 2\cos \left( {\dfrac{{2x + 6x}}{2}} \right)\cos \left( {\dfrac{{2x - 6x}}{2}} \right)
On simplification, we get,
(cos2x+cos6x)=2cos(4x)cos(2x)\Rightarrow \left( {\cos 2x + \cos 6x} \right) = 2\cos \left( {4x} \right)\cos \left( { - 2x} \right)
We know that cos(x)=cos(x)\cos \left( { - x} \right) = \cos \left( x \right). So, we get,
(cos2x+cos6x)=2cos(4x)cos(2x)\Rightarrow \left( {\cos 2x + \cos 6x} \right) = 2\cos \left( {4x} \right)\cos \left( {2x} \right) … (2)
We know that cos(A)cos(B)=2sin(A+B2)sin(AB2)\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
We can substitute the values,
(cos2xcos6x)=2sin(2x+6x2)sin(2x6x2)\Rightarrow \left( {\cos 2x - \cos 6x} \right) = - 2\sin \left( {\dfrac{{2x + 6x}}{2}} \right)\sin \left( {\dfrac{{2x - 6x}}{2}} \right)
On simplification, we get,
(cos2xcos6x)=2sin(4x)sin(2x)\Rightarrow \left( {\cos 2x - \cos 6x} \right) = - 2\sin \left( {4x} \right)\sin \left( { - 2x} \right)
We know that sin(x)=sin(x)\sin \left( { - x} \right) = - \sin \left( x \right). So, we get,
(cos2xcos6x)=2sin(4x)sin(2x)\Rightarrow \left( {\cos 2x - \cos 6x} \right) = 2\sin \left( {4x} \right)\sin \left( {2x} \right) … (3)
Substituting (3) and (2) in (1), we get,
LHS=(2cos4xcos2x)(2sin4xsin2x)\Rightarrow LHS = \left( {2\cos 4x\cos 2x} \right)\left( {2\sin 4x\sin 2x} \right)
On rearranging, we get,
LHS=(2sin2xcos2x)(2sin4xcos4x)\Rightarrow LHS = \left( {2\sin 2x\cos 2x} \right)\left( {2\sin 4x\cos 4x} \right)
We know that sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
LHS=sin4xsin8x\Rightarrow LHS = \sin 4x\sin 8x
RHS is also equal tosin4xsin8x\sin 4x\sin 8x. So, we can write,
LHS=RHSLHS = RHS.
Hence the equation is proved.

Note: We must be familiar to the following trigonometric identities used in this problem.
cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
cos(A)cos(B)=2sin(A+B2)sin(AB2)\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
sin(x)=sin(x)\sin \left( { - x} \right) = - \sin \left( x \right)
cos(x)=cos(x)\cos \left( { - x} \right) = \cos \left( x \right)
We must know the values of trigonometric functions at common angles. Adding π\pi or multiples of π\pi with the angle retains the ratio and adding π2\dfrac{\pi }{2} or odd multiples of π2\dfrac{\pi }{2} will change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The following figure gives us an idea about the signs of different trigonometric functions. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.