Question
Question: Prove the following \({{\cos }^{-1}}\left( \dfrac{4}{5} \right)+{{\cos }^{-1}}\left( \dfrac{12}{13} ...
Prove the following cos−1(54)+cos−1(1312)=cos−1(6533) .
Solution
Hint: In the given question we are asked to prove L.H.S = R.H.S. To prove that first we need to find the sum of cos−1(54) and cos−1(1312) with the help of formula i.e. cos−1x+cos−1y=cos−1(xy−1−x21−y2) to get the answer.
Complete step-by-step answer:
To prove that cos−1(54)+cos−1(1312)=cos−1(6533) let us take x=54 and y=1312 .
We know that cos−1x+cos−1y=cos−1(xy−1−x21−y2).
We have,
cos−1(54)+cos−1(1312).
=cos−154×1312−1−(54)21−(1312)2.
=cos−1(6548−1−25161−169144) .
=cos−1(6548−2525−16169169−144).
=cos−1(6548−(53×135)) .
=cos−1(6548−6515) .
=cos−1(6548−15) .
=cos−1(6533) .
Hence proved,
cos−1(54)+cos−1(1312)=cos−1(6533) .
Note: There’s an alternative way to solve this question,
Let a=cos−154 and b=cos−11312
Let a=cos−154
cosa=54
We know that ,
sin2a=1−cos2asina=1−cos2a=1−(54)2=53
Let b=cos−11312
cosb=1312
We know that ,
sin2b=1−cos2bsinb=1−cos2b=1−(1312)2=135
We know that cos(a+b)=cosacos−sinasinb
Put the values cosa=54,cosb=1312,sina=53and sinb=135 .
cos(a+b)=54×1312−53×135=6548−15=6533∴cos(a+b)=6533
a+b=cos−1(6533)
cos−1(54)+cos−1(1312)=cos−1(6533)
Hence proved.