Solveeit Logo

Question

Question: Prove the following: \({{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5}...

Prove the following: cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)

Explanation

Solution

In order to solve these types of question, we have to convert both the terms of LHS in sin1θ{{\sin }^{-1}}\theta and then compare the value with RHS, if both are equal then statement is proved. In order to convert cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) in terms of sin1θ{{\sin }^{-1}}\theta use the formula sinθ=1cos2θ\sin \theta =\sqrt{1-{{\cos }^{2}}\theta } and then apply the sum rule of sin1θ{{\sin }^{-1}}\theta which is {{\sin }^{-1}}a+{{\sin }^{-1}}b={{\sin }^{-1}}\left\\{ a\sqrt{1-{{b}^{2}}}+b\sqrt{1-{{a}^{2}}} \right\\} and hence verify the statement.

Complete step by step answer:
It is given that LHS is equal to cos1(1213)+sin1(35){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right).
Now, we have to convert cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) in terms of sin1θ{{\sin }^{-1}}\theta .
Let us suppose that x= cos1(1213)x=~{{\cos }^{-1}}\left( \dfrac{12}{13} \right)
Then, cosx=1213\cos x=\dfrac{12}{13}
As we know that sinθ=1cos2θ\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }. So, using this formula, we get
sinx=112132=1144169=25169=513\therefore \sin x=\sqrt{1-{{\dfrac{12}{13}}^{2}}}=\sqrt{1-\dfrac{144}{169}}=\sqrt{\dfrac{25}{169}}=\dfrac{5}{13}
We can also write the above expression as x=sin1(513)x={{\sin }^{-1}}\left( \dfrac{5}{13} \right)
Now, x=sin1(513)=cos1(1213)sin1(513)=cos1(1213)..................(1)x={{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right)\Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right)..................(1)

We have,
cos1(1213)+sin1(35)\therefore {{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)
We know that from equation (1), sin1(513)=cos1(1213){{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right) . So, substituting sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right) in place of cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) in the above expression, we get
sin1(513)+sin1(35)\Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)
We also know that {{\sin }^{-1}}a+{{\sin }^{-1}}b={{\sin }^{-1}}\left\\{ a\sqrt{1-{{b}^{2}}}+b\sqrt{1-{{a}^{2}}} \right\\}, using this relation in the above expression and substituting values in place of aa and bb, we get
In our case a=513a=\dfrac{5}{13} and b=35b=\dfrac{3}{5}.
\Rightarrow {{\sin }^{-1}}\left\\{ \dfrac{5}{13}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}+\dfrac{3}{5}\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \right\\}
\Rightarrow {{\sin }^{-1}}\left\\{ \dfrac{5}{13}\sqrt{1-\dfrac{9}{25}}+\dfrac{3}{5}\sqrt{1-\dfrac{25}{169}} \right\\}
\Rightarrow {{\sin }^{-1}}\left\\{ \dfrac{5}{13}\sqrt{\dfrac{16}{25}}+\dfrac{3}{5}\sqrt{\dfrac{144}{169}} \right\\}
\Rightarrow {{\sin }^{-1}}\left\\{ \dfrac{5}{13}\times \dfrac{4}{5}+\dfrac{3}{5}\times \dfrac{12}{13} \right\\}
\Rightarrow {{\sin }^{-1}}\left\\{ \dfrac{20}{65}+\dfrac{36}{65} \right\\}={{\sin }^{-1}}\left( \dfrac{56}{65} \right)
Hence, the value of expression cos1(1213)+sin1(35){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) is equal to sin1(5665){{\sin }^{-1}}\left( \dfrac{56}{65} \right).
So, cos1(1213)+sin1(35){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) = sin1(5665){{\sin }^{-1}}\left( \dfrac{56}{65} \right) = RHS
Hence, as LHS=RHS so above given statement is proved.

Note: This type of question involves calculating and substituting values in the expression with extreme precision. Students should carefully convert one expression into the other like the way we did in the above expression where sin1(513)=cos1(1213){{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right). Students should try to match the expression in RHS and LHS as it reduces the total calculation like in our case we have sin1θ{{\sin }^{-1}}\theta and cos1θ{{\cos }^{-1}}\theta in the LHS and in RHS we have sin1θ{{\sin }^{-1}}\theta . So, we converted both terms of LHS in sin1θ{{\sin }^{-1}}\theta and proved the statement.