Solveeit Logo

Question

Question: Prove the following: \({{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{...

Prove the following:
cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)

Explanation

Solution

We have to prove the given equation. As you can see that R.H.S of the above equation is a sin1{{\sin }^{-1}} term so we need to convert the L.H.S of the given equation into sin1{{\sin }^{-1}}. Converting the L.H.S of the given equation into sin1{{\sin }^{-1}} we can write cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) as π2sin1(1213)\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right). Now, we have two terms in sin1{{\sin }^{-1}} with a negative sign so we can use the identity as sin1xsin1y=sin1(x1y2y1x2){{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right). Then put the values of x and y and solve the L.H.S of the equation.

Complete step by step answer:
We have given the following equation that we are asked to prove:
cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)
As R.H.S contains sin1{{\sin }^{-1}} term so L.H.S should contain sin1{{\sin }^{-1}} term then L.H.S becomes equal to R.H.S and we can prove the given equation.
Solving L.H.S of the given equation we get,
cos1(1213)+sin1(35){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)
We know that,
sin1x+cos1x=π2 cos1x=π2sin1x \begin{aligned} & {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\\ & \Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\\ \end{aligned}
Using the above relation we can write cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) as π2sin1(1213)\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right).
π2sin1(1213)+sin1(35)\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)
Now, we know that the expansion of sin1xsin1y{{\sin }^{-1}}x-{{\sin }^{-1}}y is equal to:
sin1xsin1y=sin1(x1y2y1x2){{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)
Substituting x as 35\dfrac{3}{5} and y as 1213\dfrac{12}{13} in the above formula we get,
sin135sin11213=sin1(351(1213)2(1213)1(35)2) sin135sin11213=sin1(351(144169)(1213)1(925)) sin135sin11213=sin1(35(169144169)(1213)(25925)) sin135sin11213=sin1(35(25169)(1213)(1625)) sin135sin11213=sin1(35(513)(1213)(45)) sin135sin11213=sin1(154865) sin135sin11213=sin1(3365) \begin{aligned} & {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}}-\left( \dfrac{12}{13} \right)\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \right) \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\left( \dfrac{144}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{1-\left( \dfrac{9}{25} \right)} \right) \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\left( \dfrac{169-144}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{\left( \dfrac{25-9}{25} \right)} \right) \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\left( \dfrac{25}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{\left( \dfrac{16}{25} \right)} \right) \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\left( \dfrac{5}{13} \right)-\left( \dfrac{12}{13} \right)\left( \dfrac{4}{5} \right) \right) \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{15-48}{65} \right) \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( -\dfrac{33}{65} \right) \\\ \end{aligned}
Adding π2\dfrac{\pi }{2} on both the sides we get,
sin135sin11213+π2=sin1(3365)+π2{{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}={{\sin }^{-1}}\left( -\dfrac{33}{65} \right)+\dfrac{\pi }{2}
We know that sin1(x)=sin1x{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x so using this relation in the above problem we get,
sin135sin11213+π2=sin1(3365)+π2 sin135sin11213+π2=cos1(3365) \begin{aligned} & {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}=-{{\sin }^{-1}}\left( \dfrac{33}{65} \right)+\dfrac{\pi }{2} \\\ & \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}={{\cos }^{-1}}\left( \dfrac{33}{65} \right) \\\ \end{aligned}
Hence, we have resolved L.H.S to cos1(3365){{\cos }^{-1}}\left( \dfrac{33}{65} \right) but R.H.S is equal to sin1(5665){{\sin }^{-1}}\left( \dfrac{56}{65} \right) so we have to convert cos1(3365){{\cos }^{-1}}\left( \dfrac{33}{65} \right) in terms of sine.
We know that:
cos1x=sin1(1x2){{\cos }^{-1}}x={{\sin }^{-1}}\left( \sqrt{1-{{x}^{2}}} \right)
Now, using the above relation in cos1(3365){{\cos }^{-1}}\left( \dfrac{33}{65} \right) we get,
cos1(3365)=sin1(1(3365)2) cos1(3365)=sin1(110894225) cos1(3365)=sin1(422510894225) cos1(3365)=sin1(31364225) cos1(3365)=sin15665 \begin{aligned} & {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{1-{{\left( \dfrac{33}{65} \right)}^{2}}} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{1-\dfrac{1089}{4225}} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{\dfrac{4225-1089}{4225}} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{\dfrac{3136}{4225}} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\dfrac{56}{65} \\\ \end{aligned}

Hence, we have got the L.H.S of the given equation as sin15665{{\sin }^{-1}}\dfrac{56}{65} which is equal to R.H.S of the given equation. Hence, we have proved the given equation.

Note: The other way to solve the above problem is as follows:
cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)
Subtracting sin1(35){{\sin }^{-1}}\left( \dfrac{3}{5} \right) on both the sides we get,
cos1(1213)=sin1(5665)sin1(35){{\cos }^{-1}}\left( \dfrac{12}{13} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)
Solving R.H.S of the given equation and then proving the equation.
sin1(5665)sin1(35){{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)
Using the expansion of sin1xsin1y{{\sin }^{-1}}x-{{\sin }^{-1}}y is equal to:
sin1xsin1y=sin1(x1y2y1x2){{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)
Substituting x as 5665\dfrac{56}{65} and y as 35\dfrac{3}{5} we get,
sin1(5665)sin1(35) =sin1(56651(35)2(35)1(5665)2) =sin1(56651(925)(35)1(31364225)) =sin1(5665(25925)(35)(422531364225)) =sin1(5665(1625)(35)(10894225)) =sin1(5665(45)(35)(3365)) =sin1(22499325) =sin1(125325) \begin{aligned} & {{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}-\left( \dfrac{3}{5} \right)\sqrt{1-{{\left( \dfrac{56}{65} \right)}^{2}}} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{1-\left( \dfrac{9}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{1-\left( \dfrac{3136}{4225} \right)} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{\left( \dfrac{25-9}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{\left( \dfrac{4225-3136}{4225} \right)} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{\left( \dfrac{16}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{\left( \dfrac{1089}{4225} \right)} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{56}{65}\left( \dfrac{4}{5} \right)-\left( \dfrac{3}{5} \right)\left( \dfrac{33}{65} \right) \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{224-99}{325} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{125}{325} \right) \\\ \end{aligned}
Simplifying the fraction written inside sin1{{\sin }^{-1}} we get,
sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right)
Now, L.H.S is equal to cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) so we have to convert sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right) to cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) which we are going to do by the following way:
sin1x=cos1(1x2){{\sin }^{-1}}x={{\cos }^{-1}}\left( \sqrt{1-{{x}^{2}}} \right)
Substituting x as 513\dfrac{5}{13} we get,
sin1(513)=cos1(1(513)2) sin1(513)=cos1((16925169)) sin1(513)=cos1((144169)) sin1(513)=cos1(1213) \begin{aligned} & {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{\left( \dfrac{169-25}{169} \right)} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{\left( \dfrac{144}{169} \right)} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right) \\\ \end{aligned}
From the above, we have converted sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right) to cos1(1213){{\cos }^{-1}}\left( \dfrac{12}{13} \right) which is equal to L.H.S.
Hence, L.H.S is equal to R.H.S