Solveeit Logo

Question

Question: Prove the equation \({{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \r...

Prove the equation sin1(817)+sin1(35)=cos1(3665){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right).

Explanation

Solution

To solve this question, we should know the relation between the trigonometric ratios sine and cosine. We know the relation sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 which implies that cosθ=1sin2θ\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }. We should assume the terms in L.H.S as two different angles, that is, α=sin1(817),β=sin1(35)\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right),\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right). From these equations, we can write the values of sinα,sinβ,cosα,cosβ\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta . We have to evaluate the value of cos(α+β)\cos \left( \alpha +\beta \right) and by applying cos1{{\cos }^{-1}} to the equation, we get the required result.

Complete step by step answer:
Let us consider the two inverse sine terms in the L.H.S as two different angles.
α=sin1(817)\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right)
β=sin1(35)\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)
Applying sine on both sides in the above two equations, we get
sinα=817 sinβ=35 \begin{aligned} & \sin \alpha =\dfrac{8}{17} \\\ & \sin \beta =\dfrac{3}{5} \\\ \end{aligned}
We know the relation between sine and cosine functions as
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
Subtracting sin2θ{{\sin }^{2}}\theta on both sides, we get
cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta
Applying square root on both sides, we get
cosθ=1sin2θ\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }
Using the above relation to get the values of cosα,cosβ\cos \alpha ,\cos \beta , we get
cosα=1sin2α cosα=1(817)2 cosα=164289=28964289=225289=1517 \begin{aligned} & \cos \alpha =\sqrt{1-{{\sin }^{2}}\alpha } \\\ & \cos \alpha =\sqrt{1-{{\left( \dfrac{8}{17} \right)}^{2}}} \\\ & \cos \alpha =\sqrt{1-\dfrac{64}{289}}=\sqrt{\dfrac{289-64}{289}}=\sqrt{\dfrac{225}{289}}=\dfrac{15}{17} \\\ \end{aligned}
cosβ=1sin2β cosβ=1(35)2 cosβ=1925=25925=1625=45 \begin{aligned} & \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\\ & \cos \beta =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\\ & \cos \beta =\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} \\\ \end{aligned}
In the question, the L.H.S is in the form of α+β\alpha +\beta and the R.H.S contains cos1{{\cos }^{-1}} term in it. So, let us consider cos(α+β)\cos \left( \alpha +\beta \right)
We know the relation cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin B
Using this relation, we get
cos(α+β)=cosαcosβsinαsinβ\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta
Substituting the values of sinα,sinβ,cosα,cosβ\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta in the above equation, we get
cos(α+β)=1517×45817×35=60852485\cos \left( \alpha +\beta \right)=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{60}{85}-\dfrac{24}{85}
As the denominator is same, we can simplify the fraction as
cos(α+β)=602485=3685\cos \left( \alpha +\beta \right)=\dfrac{60-24}{85}=\dfrac{36}{85}
By applying the function of cos1{{\cos }^{-1}} on both sides, we get
cos1(cos(α+β))=cos1(3685)(1){{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)\to \left( 1 \right)
We know that 0<α,β<π20<\alpha ,\beta <\dfrac{\pi }{2} from the inference that both the sin1{{\sin }^{-1}} values are positive,
0<α+β<π0<\alpha +\beta <\pi .
So we can write that cos1(cos(α+β))=α+β{{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)=\alpha +\beta ,
Rewriting the equation-1, we get
α+β=cos1(3685)\alpha +\beta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)
Substituting the values of α,β\alpha ,\beta , we get
sin1(817)+sin1(35)=cos1(3665){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)
\therefore The statement sin1(817)+sin1(35)=cos1(3665){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right) is proved.

Note:
The alternate way to do this problem is by applying cosine function in the first step of the solution. Applying cosine function and using cos(α+β)=cosαcosβsinαsinβ\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta , we get
cos(sin1(817)+sin1(35))=cos(sin1(817))cos(sin1(35))sin(sin1(817))sin(sin1(35)) cos(sin1(817))cos(sin1(35))817×35 \begin{aligned} & \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\sin \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right) \\\ & \Rightarrow \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5} \\\ \end{aligned}
We know the formula sin1xy=cos1y2x2y{{\sin }^{-1}}\dfrac{x}{y}={{\cos }^{-1}}\dfrac{\sqrt{{{y}^{2}}-{{x}^{2}}}}{y}.
Using this relation, we get
cos(cos1(1517))cos(cos1(45))817×35=1517×45817×35=3665\cos \left( {{\cos }^{-1}}\left( \dfrac{15}{17} \right) \right)\cos \left( {{\cos }^{-1}}\left( \dfrac{4}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{36}{65}
cos(sin1(817)+sin1(35))=3665 sin1(817)+sin1(35)=cos1(3665) \begin{aligned} & \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\dfrac{36}{65} \\\ & {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right) \\\ \end{aligned}