Solveeit Logo

Question

Question: Prove the equation \({{\log }_{10}}125=3-3{{\log }_{10}}2\)...

Prove the equation log10125=33log102{{\log }_{10}}125=3-3{{\log }_{10}}2

Explanation

Solution

To solve this question, we should know the properties of logarithms. For given numbers of a, b, c…we can write logx(abc...pqr..)=logxa+logxb+logxc...logxplogxqlogxr...{{\log }_{x}}\left( \dfrac{abc...}{pqr..} \right)={{\log }_{x}}a+{{\log }_{x}}b+{{\log }_{x}}c...-{{\log }_{x}}p-{{\log }_{x}}q-{{\log }_{x}}r.... We can write the factorisation of 125 and after that, we can write the number 5 as 102\dfrac{10}{2} to get the required answer.

Complete step-by-step solution:
Let us consider the term log10125{{\log }_{10}}125. To solve further, we should do the factorisation of 125. By doing factorisations, we get
5!125 5!25 5!5 !1 \begin{aligned} & 5\left| \\!{\underline {\, 125 \,}} \right. \\\ & 5\left| \\!{\underline {\, 25 \,}} \right. \\\ & 5\left| \\!{\underline {\, 5 \,}} \right. \\\ & \left| \\!{\underline {\, 1 \,}} \right. \\\ \end{aligned}
From the above factorisation, we can write that
125=5×5×5125=5\times 5\times 5
Using this value of 125 in the logarithm, we get
log10125=log105×5×5{{\log }_{10}}125={{\log }_{10}}5\times 5\times 5
We know the formula of logarithms which is
For given numbers of a, b, c…we can write logx(abc...pqr..)=logxa+logxb+logxc...logxplogxqlogxr...(1){{\log }_{x}}\left( \dfrac{abc...}{pqr..} \right)={{\log }_{x}}a+{{\log }_{x}}b+{{\log }_{x}}c...-{{\log }_{x}}p-{{\log }_{x}}q-{{\log }_{x}}r...\to \left( 1 \right)
Using this formula, we can write the value of log10125{{\log }_{10}}125 as
log10125=log105+log105+log105=3log105(2){{\log }_{10}}125={{\log }_{10}}5+{{\log }_{10}}5+{{\log }_{10}}5=3{{\log }_{10}}5\to \left( 2 \right)
We have to get the R.H.S into the form of 33log1023-3{{\log }_{10}}2, which means that we should include 2 into the logarithms. We have the logarithmic properties in terms of multiplication and divisions. So, we have to get a relation between 5 and 2 in terms of multiplication. We can write the multiplicative relation between 5 and 2 as
5=1025=\dfrac{10}{2}
Using this in equation-2, we get
3log105=3log10(102)3{{\log }_{10}}5=3{{\log }_{10}}\left( \dfrac{10}{2} \right)
Using the equation-1, we get
3log105=3log10(102)=3(log1010log102)3{{\log }_{10}}5=3{{\log }_{10}}\left( \dfrac{10}{2} \right)=3\left( {{\log }_{10}}10-{{\log }_{10}}2 \right)
We know that for any given positive number a, logaa=1{{\log }_{a}}a=1
Using this relation, we get
3log105=3log10(102)=3(1log102)=33log102 log10125=33log102 \begin{aligned} & 3{{\log }_{10}}5=3{{\log }_{10}}\left( \dfrac{10}{2} \right)=3\left( 1-{{\log }_{10}}2 \right)=3-3{{\log }_{10}}2 \\\ & {{\log }_{10}}125=3-3{{\log }_{10}}2 \\\ \end{aligned}
\therefore Hence proved the equation log10125=33log102{{\log }_{10}}125=3-3{{\log }_{10}}2.

Note: An alternate approach to prove the given statement is by considering log10125+3log102{{\log }_{10}}125+3{{\log }_{10}}2. We can write the considered expression aslog10125+log102+log102+log102{{\log }_{10}}125+{{\log }_{10}}2+{{\log }_{10}}2+{{\log }_{10}}2. We know the formula related to logarithms and by applying it, we get log10125+3log102=log10(125×2×2×2)=log101000=log10(10×10×10){{\log }_{10}}125+3{{\log }_{10}}2={{\log }_{10}}\left( 125\times 2\times 2\times 2 \right)={{\log }_{10}}1000={{\log }_{10}}\left( 10\times 10\times 10 \right).
We can write log10(10×10×10)=log1010+log1010+log1010=3log1010=3{{\log }_{10}}\left( 10\times 10\times 10 \right)={{\log }_{10}}10+{{\log }_{10}}10+{{\log }_{10}}10=3{{\log }_{10}}10=3