Solveeit Logo

Question

Question: Prove the equation given below \(\cot x.\cot 2x - \cot 2x.\cot 3x - \cot x.\cot 3x = 1\)...

Prove the equation given below
cotx.cot2xcot2x.cot3xcotx.cot3x=1\cot x.\cot 2x - \cot 2x.\cot 3x - \cot x.\cot 3x = 1

Explanation

Solution

Hint- Start with taking out cot3x3x common from the last two terms and then write 3x3x as 2x+x2x+x , now use the identity cot(A+B)=cotAcotB1cotA+cotB\cot \left( {A + B} \right) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}} .

Complete step-by-step answer:

Given equation is cotx.cot2xcot2x.cot3xcotx.cot3x=1\cot x.\cot 2x - \cot 2x.\cot 3x - \cot x.\cot 3x = 1
By taking L.H.S we have
=cotx.cot2xcot2x.cot3xcotx.cot3x= \cot x.\cot 2x - \cot 2x.\cot 3x - \cot x.\cot 3x
Take cot3x\cot 3x common from above term.
cotx.cot2xcot3x[cot2x+cotx]\cot x.\cot 2x - \cot 3x\left[ {\cot 2x + \cot x} \right]
Here we can write cot3x as cot(x+2x)\cot 3x{\text{ as }}\cot \left( {x + 2x} \right)
Therefore the term becomes
=cotx.cot2xcot(x+2x)[cot2x+cotx]= \cot x.\cot 2x - \cot \left( {x + 2x} \right)\left[ {\cot 2x + \cot x} \right]
AS we know that [cot(A+B)=cotAcotB1cotA+cotB]\left[ {\cot \left( {A + B} \right) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}}} \right]
By applying this formula, we get
cotxcot2x(cot2xcotx1cot2x+cotx)(cot2x+cotx)\Rightarrow \cot x\cot 2x - \left( {\dfrac{{\cot 2x\cot x - 1}}{{\cot 2x + \cot x}}} \right)\left( {\cot 2x + \cot x} \right)
Now by simplifying the above term, we get
cot2xcotx(cot2xcotx1) cot2xcotxcot2xcotx+1 1  \Rightarrow \cot 2x\cot x - \left( {\cot 2x\cot x - 1} \right) \\\ \Rightarrow \cot 2x\cot x - \cot 2x\cot x + 1 \\\ \Rightarrow 1 \\\
Hence, the result is same as R.H.S

Note- In order to solve these types of problems, first of all remember all the trigonometric identities and formulas. In the above question we use a formula of cotangent to split its angles. Similarly remember formulas to change product into sum and sum into product.