Question
Question: Prove the equality: \(\underset{n\text{ digits}}{\mathop{{{\left( 666...6 \right)}^{2}}}}\,+\under...
Prove the equality:
n digits(666...6)2+n digits888...8=2n digits444...4
Explanation
Solution
Hint: Take S1=666...6,S2=888...8. Expand them to form a geometric progression. Then find the value of S12+S2.
“Complete step-by-step answer:”
Take S1=666...6Given S1=666...upto n-digits=6+6×10+6×102+6×103+...+6×10n−1=6(1+10+102+....+10n−1)
Now 1+10+102+....+10n−1 is the expanded form of 10−110n−1
i.e., It is of the form r−1a(rn−1)
Where a = first term, r = common ratio
Which is a geometric progression.
Here a = 1, r = 10.
∴S1=6[1(10−110n−1)]=6×9(10n−1)=32(10n−1)
Now S2=888... up to n-digits