Solveeit Logo

Question

Question: Prove the equality: \(\underset{n\text{ digits}}{\mathop{{{\left( 666...6 \right)}^{2}}}}\,+\under...

Prove the equality:
(666...6)2n digits+888...8n digits=444...42n digits\underset{n\text{ digits}}{\mathop{{{\left( 666...6 \right)}^{2}}}}\,+\underset{n\text{ digits}}{\mathop{888...8}}\,=\underset{2n\text{ digits}}{\mathop{444...4}}\,

Explanation

Solution

Hint: Take S1=666...6,S2=888...8{{S}_{1}}=666...6,{{S}_{2}}=888...8. Expand them to form a geometric progression. Then find the value of S12+S2{{S}_{1}}^{2}+{{S}_{2}}.

“Complete step-by-step answer:”
Take S1=666...6 Given S1=666...upto n-digits =6+6×10+6×102+6×103+...+6×10n1 =6(1+10+102+....+10n1) \begin{aligned} & \text{Take }{{S}_{1}}=666...6 \\\ & \text{Given }{{S}_{1}}=666...\text{upto n-digits} \\\ & =6+6\times 10+6\times {{10}^{2}}+6\times {{10}^{3}}+...+6\times {{10}^{n-1}} \\\ & =6\left( 1+10+{{10}^{2}}+....+{{10}^{n-1}} \right) \\\ \end{aligned}
Now 1+10+102+....+10n11+10+{{10}^{2}}+....+{{10}^{n-1}} is the expanded form of 10n1101\dfrac{{{10}^{n}}-1}{10-1}
i.e., It is of the form a(rn1)r1\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}
Where a = first term, r = common ratio
Which is a geometric progression.
Here a = 1, r = 10.
S1=6[1(10n1101)]=6×(10n1)9=23(10n1)\therefore {{S}_{1}}=6\left[ 1\left( \dfrac{{{10}^{n}}-1}{10-1} \right) \right]=6\times \dfrac{\left( {{10}^{n}}-1 \right)}{9}=\dfrac{2}{3}\left( {{10}^{n}}-1 \right)
Now S2=888...{{S}_{2}}=888... up to n-digits

& =8+8\times 10+8\times {{10}^{2}}+...+8\times {{10}^{n-1}} \\\ & =8\left( 1+10+{{10}^{2}}+...+{{10}^{n-1}} \right) \\\ & =8\times 1\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]=\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\\ \end{aligned}$$ We need to find ${{\left( {{S}_{1}} \right)}^{2}}+{{S}_{2}}={{\left[ \dfrac{2}{3}\left( {{10}^{n}}-1 \right) \right]}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right)$ $\begin{aligned} & =\dfrac{4}{9}{{\left( {{10}^{n}}-1 \right)}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\\ & =\dfrac{\left( {{10}^{n}}-1 \right)}{9}\left[ 4\left( {{10}^{n}}-1 \right)+8 \right] \\\ \end{aligned}$ Taking 4 common, $\begin{aligned} & =4\left( \dfrac{{{10}^{n}}-1}{10-1} \right)\left[ \left( {{10}^{n}}-1 \right)+2 \right] \\\ & =4\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]\left[ {{10}^{n}}-1+2 \right] \\\ & =4\dfrac{\left( {{10}^{n}}-1 \right)\left( {{10}^{n}}+1 \right)}{10-1} \\\ & =4\dfrac{\left[ {{\left( {{10}^{n}} \right)}^{2}}-{{1}^{2}} \right]}{10-1} \\\ \end{aligned}$ We know ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ $=\dfrac{4\left[ {{10}^{2n}}-1 \right]}{\left[ 10-1 \right]}$ $\therefore $444....4 up to 2n digits. Hence proved. Note: A geometric progression is a sequence in which each term is derived by multiplying/dividing the preceding term by a fixed number called common ratio. The general form of GP is $a,ar,a{{r}^{2}},a{{r}^{3}}$ and so on; a = first term r = common ratio