Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Prove that y=4sinθ(2+cosθ)θy=\frac{ 4sinθ}{(2+cosθ)}-θ is an increasing function of θθ in [0,π2][0,\frac π2].

Answer

We have,

y = 4sinθ(2+cosθ)\frac {4sinθ}{(2+cosθ)} - θ

dydx\frac {dy}{dx} = (2+cosθ)(4cosθ)4sin(sinθ)(2+cosθ)21\frac {(2+cosθ)(4cosθ)-4sin(-sinθ)}{(2+cosθ)^2} - 1

= 8cosθ+4cos2θ+4sin2θ(2+cos)21\frac {8cosθ+4cos^2θ+4sin^2θ}{(2+cos)^2}-1

= 8cosθ+4(2+cos)21\frac {8cosθ+4}{(2+cos)^2}-1

Now,dydx\frac {dy}{dx} = 0.

\implies $$\frac {8cosθ+4}{(2+cosθ)^2}=1

    \implies 8cosθ+4 = 4+cos2θ+4cosθ

    \implies cos2θ-4cosθ = 0

    \implies cosθ(cosθ-4) = 0

    \implies cosθ=0 or cosθ=4

since cosθ≠4, cosθ=0

cosθ=0    \implies θ=π2\frac \pi2

Now,

dydx\frac {dy}{dx} = 8cosθ+4(4+cos2θ+4cosθ)(2+cosθ)2\frac {8cosθ+4-(4+cos^2θ+4cosθ)}{(2+cosθ)^2} = 4cosθcos2θ(2+cosθ)2\frac {4cosθ-cos^2θ}{(2+cosθ)^2 }= cosθ(4cosθ)(2+cosθ)2\frac {cosθ(4-cosθ)}{(2+cosθ)^2}

In interval , we have cos θ > 0. Also, 4>cos θ ⇒ 4−cos θ>0.

    \implies cos(4-cosθ)>0 and also (2+cosθ)2>0

\implies $$\frac {cosθ(4-cosθ)}{(2+cosθ)^2} > 0

dydx\frac {dy}{dx}>0

Therefore, y is strictly increasing in interval (0,π2)(0,\frac π2).

Also, the given function is continuous at x=0 and x=π2\fracπ2.

Hence, y is increasing in interval [0,π2][0,\frac π2].