Question
Mathematics Question on Applications of Derivatives
Prove that y=(2+cosθ)4sinθ−θis an increasing function of θ in [0,2π].
We have,
y = (2+cosθ)4sinθ - θ
dxdy = (2+cosθ)2(2+cosθ)(4cosθ)−4sin(−sinθ)−1
= (2+cos)28cosθ+4cos2θ+4sin2θ−1
= (2+cos)28cosθ+4−1
Now,dxdy = 0.
\implies $$\frac {8cosθ+4}{(2+cosθ)^2}=1
⟹8cosθ+4 = 4+cos2θ+4cosθ
⟹cos2θ-4cosθ = 0
⟹cosθ(cosθ-4) = 0
⟹cosθ=0 or cosθ=4
since cosθ≠4, cosθ=0
cosθ=0⟹θ=2π
Now,
dxdy = (2+cosθ)28cosθ+4−(4+cos2θ+4cosθ) = (2+cosθ)24cosθ−cos2θ= (2+cosθ)2cosθ(4−cosθ)
In interval , we have cos θ > 0. Also, 4>cos θ ⇒ 4−cos θ>0.
⟹cos(4-cosθ)>0 and also (2+cosθ)2>0
\implies $$\frac {cosθ(4-cosθ)}{(2+cosθ)^2} > 0
dxdy>0
Therefore, y is strictly increasing in interval (0,2π).
Also, the given function is continuous at x=0 and x=2π.
Hence, y is increasing in interval [0,2π].