Solveeit Logo

Question

Mathematics Question on Differential equations

Prove that x2y2=c(x2+y2)x^2-y^2=c(x^2+y^2)is the general solution of differential equation(x33xy2)dx=(y33x2y)dyx^3-3xy^2)dx=(y^3-3x^2y)dy,where cc is parameter.

Answer

(x33xy2)dx=(y33x2y)dy(x^3-3xy^2)dx=(y^3-3x^2y)dy

dydx=x33xy2y33x2y...(1)⇒\frac{dy}{dx}=\frac{x^3-3xy^2}{y^3-3x^2y}...(1)

This is a homogenous equation.To simplify it,we need to make the substitution as:

y=vxy=vx

ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)

dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}

Substituting the values of yy and dydx\frac{dy}{dx} in equation(1),we get:

v+xdvdx=x33x(vx)2(vx)33x2(vx)v+x\frac{dv}{dx}=\frac{x^3-3x(vx)^2}{(vx)^3-3x^2(vx)}

v+xdvdx=13v2v33v⇒v+x\frac{dv}{dx}=\frac{1-3v^2}{v^3-3v}

xdvdx=13v2v33vv⇒x\frac{dv}{dx}=\frac{1-3v^2}{v^3-3v-v}

xdvdx=13v2v(v33v)v33v⇒x\frac{dv}{dx}=\frac{1-3v^2-v(v^3-3v)}{v^3-3v}

xdvdx=1v4v33v⇒x\frac{dv}{dx}=\frac{1-v^4}{v^3-3v}

(v33v1v4)dv=dxx⇒(\frac{v^3-3v}{1-v^4})dv=\frac{dx}{x}

Integrating both sides,we get:

(v33v1v4)dv=logx+logC...(2)\int(\frac{v^3-3v}{1-v^4})dv=logx+logC'...(2)

Now,(v33v1v4)dv=v3dv1v43vdv1v4\int(\frac{v^3-3v}{1-v^4})dv=\int\frac{v^3dv}{1-v^4}-3\int\frac{vdv}{1-v^4}

(v33v1v4)dv=I13I2,where  I1=v3dv1v4  and  I2=vdv1v4....(3)⇒\int(\frac{v^3-3v}{1-v^4})dv=I_1-3I_2,where\space I_1=\int\frac{v^3dv}{1-v^4}\space and \space I_2=\int\frac{vdv}{1-v^4}....(3)

Let 1v4=t.1-v^4=t.

ddv(1v4)=dtdv∴\frac{d}{dv}(1-v^4)=\frac{dt}{dv}

4v3=dtdv⇒-4v^3=\frac{dt}{dv}

v3dv=dt4⇒v^3dv=-\frac{dt}{4}

⇒Now,I1=dt4t=14logt=14log(1v4)I_1=\int-\frac{dt}{4t}=-\frac{1}{4}logt=-\frac{1}{4}log(1-v^4)

And,I2=vdv1v4=vdv1(v2)2I_2=\int\frac{vdv}{1-v^4}=\int\frac{vdv}{1-(v^2)^2}

Let v2=pv^2=p

ddv(v2)=dpdv∴\frac{d}{dv}(v^2)=\frac{dp}{dv}

2v=dpdv⇒2v=\frac{dp}{dv}

vdv=dp2⇒vdv=\frac{dp}{2}

I2=12dp1p2=12×2log1+p1p=14log1+v21v2⇒I_2=\frac{1}{2}\int\frac{dp}{1-p^2}=\frac{1}{2\times2}log|\frac{1+p}{1-p}|=\frac{1}{4}log|\frac{1+v^2}{1-v^2}|

Substituting the values of I1 and I2 in equation(3),we get:

(v33v1v4)dv=14log(1v4)34log1v21+v2\int(\frac{v^3-3v}{1-v^4})dv=-\frac{1}{4}log(1-v^4)-\frac{3}{4}log|\frac{1-v^2}{1+v^2}|

Therefore,equation(2),becomes:

14log(1v4)34log1+v21v2logx+logC\frac{1}{4}log(1-v^4)-\frac{3}{4}log|\frac{1+v^2}{1-v^2}|logx+logC'

14log[(1v4)(1+v21v2)]=logCx⇒-\frac{1}{4}log[(1-v^4)(\frac{1+v^2}{1-v^2})]=logC'x

(1+v2)4(1v2)2=(Cx)4⇒\frac{(1+v^2)^4}{(1-v^2)^2}=(C'x)-4

(1+y2x2)4(1y2x2)2=1C4x4⇒\frac{(1+\frac{y^2}{x^2})^4}{(1-\frac{y^2}{x^2})^2}=\frac{1}{C'4x^4}

(x2+y2)4x4(x2y2)2=1CX4x4⇒\frac{(x^2+y^2)^4}{x^4(x^2-y^2)^2}=\frac{1}{CX'4x^4}

(x2y2)2=C4(x2+y2)4⇒(x^2-y^2)^2=C'^4(x^2+y^2)^4

(x2y2)=C2(x2+y2)2⇒(x^2-y^2)=C'^2(x^2+y^2)^2

x2y2=C(x2+y2)2,whereC=C2⇒x^2-y^2=C(x^2+y^2)^2,where C=C'^2

Hence,the given result is proved.