Question
Mathematics Question on Differential equations
Prove that x2−y2=c(x2+y2)is the general solution of differential equation(x3−3xy2)dx=(y3−3x2y)dy,where c is parameter.
(x3−3xy2)dx=(y3−3x2y)dy
⇒dxdy=y3−3x2yx3−3xy2...(1)
This is a homogenous equation.To simplify it,we need to make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=(vx)3−3x2(vx)x3−3x(vx)2
⇒v+xdxdv=v3−3v1−3v2
⇒xdxdv=v3−3v−v1−3v2
⇒xdxdv=v3−3v1−3v2−v(v3−3v)
⇒xdxdv=v3−3v1−v4
⇒(1−v4v3−3v)dv=xdx
Integrating both sides,we get:
∫(1−v4v3−3v)dv=logx+logC′...(2)
Now,∫(1−v4v3−3v)dv=∫1−v4v3dv−3∫1−v4vdv
⇒∫(1−v4v3−3v)dv=I1−3I2,whereI1=∫1−v4v3dvandI2=∫1−v4vdv....(3)
Let 1−v4=t.
∴dvd(1−v4)=dvdt
⇒−4v3=dvdt
⇒v3dv=−4dt
⇒Now,I1=∫−4tdt=−41logt=−41log(1−v4)
And,I2=∫1−v4vdv=∫1−(v2)2vdv
Let v2=p
∴dvd(v2)=dvdp
⇒2v=dvdp
⇒vdv=2dp
⇒I2=21∫1−p2dp=2×21log∣1−p1+p∣=41log∣1−v21+v2∣
Substituting the values of I1 and I2 in equation(3),we get:
∫(1−v4v3−3v)dv=−41log(1−v4)−43log∣1+v21−v2∣
Therefore,equation(2),becomes:
41log(1−v4)−43log∣1−v21+v2∣logx+logC′
⇒−41log[(1−v4)(1−v21+v2)]=logC′x
⇒(1−v2)2(1+v2)4=(C′x)−4
⇒(1−x2y2)2(1+x2y2)4=C′4x41
⇒x4(x2−y2)2(x2+y2)4=CX′4x41
⇒(x2−y2)2=C′4(x2+y2)4
⇒(x2−y2)=C′2(x2+y2)2
⇒x2−y2=C(x2+y2)2,whereC=C′2
Hence,the given result is proved.