Question
Mathematics Question on Vector Algebra
Prove that (a+b).(a+b)=|a|2+|b|2, if and only if a,b are perpendicular, given a≠0,b≠0.
Answer
(a+b).(a+b)=a|2+|b|2
⇔ a.a+a.b+b.a+b.b=|a|2+|b|2 [Distributivity of scalar products over addition]
⇔|a|2+2a.b+|b|2=|a|2+|b|2 [a.b=b.a(Scalar product is commutative)]
⇔2a.b=0
⇔a.b=0
∴a and b are perpendicular. [a≠0,b≠0(Given)]