Solveeit Logo

Question

Mathematics Question on Vector Algebra

Prove that (a+b\vec a+\vec b).(a+b\vec a+\vec b)=|a\vec a|2+|b\vec b|2, if and only if a\vec a,b\vec b are perpendicular, given a≠0,b≠0.

Answer

(a+b\vec a+\vec b).(a+b\vec a+\vec b)=a\vec a|2+|b\vec b|2
a.a\vec a.\vec a+a.b\vec a.\vec b+b.a\vec b.\vec a+b.b\vec b.\vec b=|a\vec a|2+|b\vec b|2 [Distributivity of scalar products over addition]
⇔|a\vec a|2+2a\vec a.b\vec b+|b\vec b|2=|a\vec a|2+|b\vec b|2 [a.b=b.a\vec a.\vec b=\vec b.\vec a(Scalar product is commutative)]
2a.b2\vec a.\vec b=0
a.b\vec a.\vec b=0
a\vec a and b\vec b are perpendicular. [a\vec a0\vec 0,b\vec b0\vec 0(Given)]