Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

Prove that nr=03rnCr=4n\underset{r=0} {\overset{n}∑} { 3^r }\,{ ^nC_r} = 4^n

Answer

By Binomial Theorem,

nr=0nCranrbr=(a+b)n\underset{r=0} {\overset{n}∑} \,{ ^nC_r} a^{n-r} b^r= (a+b)^n

By putting b=3b=3 and a=1a = 1in the above eqution, we obtain

nr=0nCr(1)nr(3)r=(1+3)n\underset{r=0} {\overset{n}∑} \,{ ^nC_r} (1)^{n-r} (3)^r= (1+3)^n

nr=03rnCr=4n\underset{r=0} {\overset{n}∑} { 3^r }\,{ ^nC_r} = 4^n

Hence, proved.