Solveeit Logo

Question

Question: Prove that there is no term involving \({{x}^{2}}\) in the expression of \({{\left( 2{{x}^{2}}-\dfra...

Prove that there is no term involving x2{{x}^{2}} in the expression of (2x23x)11{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}, where x0x\ne 0.

Explanation

Solution

Hint: In this question, we will use binomial theorem to expand the given expression and then check powers of xx in all the terms involved in expansion and check if x2{{x}^{2}} is present or not.

Complete step-by-step answer:
Firstly, we will use binomial theorem to write expanded form of (2x23x)11{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}.
Binomial theorem states that,
For any positive integer nn, the nth{{n}^{th}} power of the sum of two real numbers aa and bb may be expressed as the sum of n+1n+1 terms as given below:
(a+b)n=r=0nnCranrbr{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}
(a+b)n=nC0an+nC1an1b1+nC2an2b2++nCranrbr++nCnbn\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}.
Where, nCr=!n!r×!nr{}^{n}{{C}_{r}}=\dfrac{\left| \\!{\underline {\, n \,}} \right. }{\left| \\!{\underline {\, r \,}} \right. \times \left| \\!{\underline {\, n-r \,}} \right. }.
Here, using binomial theorem in (2x23x)11{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}, we have,
a=2x2,b=3xandn=11a=2{{x}^{2}},\,b=-\dfrac{3}{x}\,\text{and}\,n=11
Therefore,
(2x23x)11=r=01111Cr(2x2)11r(3x)r{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}{{\left( 2{{x}^{2}} \right)}^{11-r}}{{\left( -\dfrac{3}{x} \right)}^{r}}}
Distributing power in numerator and denominator of 3x\dfrac{-3}{x} and multiplying powers of 2x22{{x}^{2}}, we get,
(2x23x)11=r=01111Cr2x2(11r)(3rxr){{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2{{x}^{2\left( 11-r \right)}}\left( -\dfrac{{{3}^{r}}}{{{x}^{r}}} \right)}
Applying distributive law in power of xx, we get,
(2x23x)11=r=01111Cr2x222r(3rxr){{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2{{x}^{22-2r}}\left( -\dfrac{{{3}^{r}}}{{{x}^{r}}} \right)}
Separating xx, we get,
(2x23x)11=r=01111Cr2(3r)x222rxr{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right)\dfrac{{{x}^{22-2r}}}{{{x}^{r}}}}
Writing all exponential powers of xx in numerator, we get,
(2x23x)11=r=01111Cr2(3r)x222rr =r=01111Cr2(3r)x223r \begin{aligned} & {{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right){{x}^{22-2r-r}}} \\\ & =\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right){{x}^{22-3r}}} \\\ \end{aligned}
Here, the value of rr is an integer, which lies from 0 to 11.
Therefore, from above equation, we can say that, terms of xx in the expansion of (2x23x)11{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}} are:
x223×0,x223×1,x223×2,x223×3,x223×4,x223×5,x223×6,x223×7,x223×8,x223×9,x223×10{{x}^{22-3\times 0}},\,{{x}^{22-3\times 1}},\,{{x}^{22-3\times 2}},\,{{x}^{22-3\times 3}},\,{{x}^{22-3\times 4}},\,{{x}^{22-3\times 5}},\,{{x}^{22-3\times 6}},\,{{x}^{22-3\times 7}},\,{{x}^{22-3\times 8}},{{x}^{22-3\times 9}},\,{{x}^{22-3\times 10}} and x223×11{{x}^{22-3\times 11}}
=x220,x223,x226,x229,x2212,x2215,x2218,x2221,x2224,x2227,x2230={{x}^{22-0}},\,{{x}^{22-3}},\,{{x}^{22-6}},\,{{x}^{22-9}},\,{{x}^{22-12}},\,{{x}^{22-15}},\,{{x}^{22-18}},\,{{x}^{22-21}},\,{{x}^{22-24}},{{x}^{22-27}},\,{{x}^{22-30}} and x2233{{x}^{22-33}}
=x22,x19,x16,x13,x10,x7,x4,x1,x2,x5,x8={{x}^{22}},\,{{x}^{19}},\,{{x}^{16}},\,{{x}^{13}},\,{{x}^{10}},\,{{x}^{7}},\,{{x}^{4}},\,{{x}^{1}},\,{{x}^{-2}},{{x}^{-5}},\,{{x}^{-8}}and x11{{x}^{-11}}
Hence, we can see that, there is no term involving x2{{x}^{2}} in expansion of expression (2x23x)11{{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}.
Hence proved.

Note: This question can also be done by actually expanding the whole expression with all its coefficients. But it must be noted that we only need to check if x2{{x}^{2}} is present or not and don’t need its coefficient. So, full expansion is not needed.