Solveeit Logo

Question

Question: Prove that the value of \(\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}\)....

Prove that the value of tan70tan20=2tan50\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}.

Explanation

Solution

Hint: Here, we can write 70=20+50{{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}, then apply tan on both the sides. After that apply the formulas.

Complete step-by-step answer:
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}, tanA=cot(90A)\tan A=\cot ({{90}^{\circ }}-A) and tanAcotA=1\tan A\cot A=1.

Here, we have to prove that tan70tan20=2tan50\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}.
For that first, we have to write:
70=20+50{{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}
Now, by applying tan on both the sides we get,
tan70=tan(20+tan50) ..... (1)\tan {{70}^{\circ }}=\tan ({{20}^{\circ }}+\tan {{50}^{\circ }})\text{ }.....\text{ (1)}
RHS is in the form of tan(A+B)\tan (A+B). We have a formula for tan(A+B)\tan (A+B), the formula is given by:
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} .
In our equation (1) we have A=20A={{20}^{\circ }}, B=50B={{50}^{\circ }} and A+B=70A+B={{70}^{\circ }}. Now by applying the above formula to equation (1) we obtain:
tan70=tan20+tan501tan20tan50\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}
By cross multiplication our equation becomes,
tan70(1tan20tan50)=tan20+tan50\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}
In the next step, we have to multiply tan70\tan {{70}^{\circ }}with (1tan20tan50)\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right), we get the equation:
tan70tan70tan20tan50=tan20+tan50 ..... (2)\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\tan {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }.....\text{ (2)}
Next, we have to check that if there is any cancellation possible.
We are familiar with the formula that,
tanA=cot(90A)\tan A=\cot ({{90}^{\circ }}-A)
We can apply the above formula in equation (2) for further cancellation.
The formula can be applied for either tan20\tan {{20}^{\circ }} or tan70\tan {{70}^{\circ }}.Here we are applying for tan20\tan {{20}^{\circ }}. i.e. by applying the above formula we get,
tan20=cot(9020) tan20=cot70 .... (3) \begin{aligned} & \tan {{20}^{\circ }}=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\\ & \tan {{20}^{\circ }}=\cot {{70}^{\circ }}\text{ }....\text{ (3)} \\\ \end{aligned}
By substituting equation (3) in equation (2) we get:
tan70tan70cot70tan50=tan20+tan50 .... (4)\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\cot {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }....\text{ (4)}
We also know that tanAcotA=1\tan A\cot A=1.
In equation (4) we have A=70A={{70}^{\circ }}, so we can say that tan70cot70=1\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1
Therefore, our equation (4) becomes:
tan701×tan50=tan20+tan50  tan70tan50=tan20+tan50  \begin{aligned} & \tan {{70}^{\circ }}-1\times \tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\\ & \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\\ \end{aligned}
Next, by taking tan20\tan {{20}^{\circ }}to the left side, tan20\tan {{20}^{\circ }} becomes tan20-\tan {{20}^{\circ }}. Hence, our equation becomes:
tan70tan50tan20=tan50 \tan {{70}^{\circ }}-\tan {{50}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}\text{ }
In the next step take tan50-\tan {{50}^{\circ }} to the right side, then tan50-\tan {{50}^{\circ }} becomes tan50\tan {{50}^{\circ }}. So, we obtain the equation:
tan70tan20=tan50+tan50  tan70tan20=2tan50 \begin{aligned} & \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\\ & \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }} \\\ \end{aligned}
Hence, we have proved that tan70tan20=2tan50\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}.

Note: To solve this problem we should be familiar with the trigonometric formulas. Here, alternatively you can directly apply the formula for tanAtanB.\tan A-\tan B.