Solveeit Logo

Question

Question: Prove that the value of \(^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}\)....

Prove that the value of nCr+nCr1=n+1Cr^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}.

Explanation

Solution

Hint: To prove nCr+nCr1=n+1Cr^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}, we will solve L.H.S and try to show that it is equal to R.H.S. By using the formula of nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} to solve this problem.

Complete step-by-step answer:
It is given in the question to prove nCr+nCr1=n+1Cr^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}. We know that, nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} using this formula we will expand L.H.S. We get –
nCr+nCr1{{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}
n!r!(nr)!+n!n(r+1)!(r1)! n!r!(nr)!+n!(nr+1)!(r1)! \begin{aligned} & \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\\ & \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\\ \end{aligned}
Taking n!n! as common from both the terms, we get
n![1r!(nr)!+1(nr+1)!(r1)!]\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]
We can write r!r! as r×(r1)!r\times (r-1)! because n!n! can be written as n×(n1)×(n2)×(n3)×........................n\times (n-1)\times (n-2)\times (n-3)\times ........................
n![1r(r1)!(nr)!+1(r1)!(nr+1)!]\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]
Taking (r1)!(r-1)! common from denominator, we get
=n!(r1)![1r(nr)!+1(nr+1)!]=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]
We can also write (nr+1)(n-r+1) as (nr+1)×(nr)!(n-r+1)\times (n-r)!. Then, we get
n!(r1)![1(nr)!×r+1(nr+1)(nr)!]\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]
Taking (nr)!(n-r)! as common, we get
n!(nr)!(r1)![1r+1(nr+1)]\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]
Taking L.C.M of rr and (nr+1)(n-r+1) as r(nr+1)r(n-r+1), we get
n!(nr)!(r1)![nr+1+rr(nr+1)]\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]
n!(nr)!(r1)![n+1r(nr+1)]\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]
(n+1)n!(r1)!(nr)!×r(nr+1)\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}
(n+1)n!(nr+1)(r1)!(nr)!×r\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}
We can write (n+1)×n!(n+1)\times n! as (n+1)!(n+1)! because we are multiplying n!n! to its successive number. For example, we can write (7+1)×7!(7+1)\times 7! as 8!8!. Also, (nr+1)(nr)!(n-r+1)(n-r)! can be written as (nr+1)!(n-r+1)! and r(r1)!r(r-1)! can be written as r!r!.
(n+1)!(nr+1)!×r!\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!} =n+1Cr={}^{n+1}{{C}_{r}} = L.H.S
On expanding n+1Cr{}^{n+1}{{C}_{r}} using formula nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}, we get
n+1Cr=(n+1)!(nr+1)!×r!{}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}. Therefore,
L.H.S = R.H.S.
Hence, we proved nCr+nCr1=n+1Cr^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}.

Note: It is very important to differentiate between nCr^{n}{{C}_{r}} and nPr{}^{n}{{P}_{r}} expansion. As, nCr^{n}{{C}_{r}} gives the total combination whereas, nPr{}^{n}{{P}_{r}} gives total permutation and the expansion of nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!} and nPr=n!(nr)!{}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}.