Solveeit Logo

Question

Question: Prove that the two parabolas \( {y^2} = 4ax \) and \( {x^2} = 4by \) intersect (other than the origi...

Prove that the two parabolas y2=4ax{y^2} = 4ax and x2=4by{x^2} = 4by intersect (other than the origin) at an angle of tan1[3a13b132(a23+b23)]{\tan ^{ - 1}}\left[ {\dfrac{{3{a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}}}{{2\left( {{a^{\dfrac{2}{3}}} + {b^{\dfrac{2}{3}}}} \right)}}} \right].

Explanation

Solution

Hint: Here, we will proceed by firstly finding the points of intersection of the given parabolas and then we will find the slopes of tangent of these two curves at the intersection point other than origin and then apply the formula tanθ=m2m11+m1m2\tan \theta = \dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}} .

Complete step-by-step answer:
Equations of the given parabolas are y2=4ax (1){y^2} = 4ax{\text{ }} \to (1) and x2=4by (2){x^2} = 4by{\text{ }} \to {\text{(2)}}
Equation (2) can be rewritten as y=x24b (3)y = \dfrac{{{x^2}}}{{4b}}{\text{ }} \to {\text{(3)}}
By substituting the value of y from equation (3) in equation (1), we get
(x24b)2=4ax x416b2=4ax  \Rightarrow {\left( {\dfrac{{{x^2}}}{{4b}}} \right)^2} = 4ax \\\ \Rightarrow \dfrac{{{x^4}}}{{16{b^2}}} = 4ax \\\
By cross multiplying the above equation, we get
x4=(4ax)(16b2) x4=64ab2x x464ab2x=0  \Rightarrow {x^4} = \left( {4ax} \right)\left( {16{b^2}} \right) \\\ \Rightarrow {x^4} = 64a{b^2}x \\\ \Rightarrow {x^4} - 64a{b^2}x = 0 \\\
By taking x common from the LHS of the above equation, we get
x(x364ab2)=0\Rightarrow x\left( {{x^3} - 64a{b^2}} \right) = 0
Either x=0x = 0 or x364ab2=0 x3=64ab2 x=(64ab2)13=(64)13(a)13(b2)13 x=4a13b23  {x^3} - 64a{b^2} = 0 \\\ \Rightarrow {x^3} = 64a{b^2} \\\ \Rightarrow x = {\left( {64a{b^2}} \right)^{\dfrac{1}{3}}} = {\left( {64} \right)^{\dfrac{1}{3}}}{\left( a \right)^{\dfrac{1}{3}}}{\left( {{b^2}} \right)^{\dfrac{1}{3}}} \\\ \Rightarrow x = 4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}} \\\
By putting x = 0 in equation (3), we get
y=04b=0y = \dfrac{0}{{4b}} = 0
By putting x=4a13b23x = 4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}} in equation (3), we get

y=(4a13b23)24b=16a23b434b=4a23b431=4a23b433 y=4a23b13  \Rightarrow y = \dfrac{{{{\left( {4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}}} \right)}^2}}}{{4b}} = \dfrac{{16{a^{\dfrac{2}{3}}}{b^{\dfrac{4}{3}}}}}{{4b}} = 4{a^{\dfrac{2}{3}}}{b^{\dfrac{4}{3} - 1}} = 4{a^{\dfrac{2}{3}}}{b^{\dfrac{{4 - 3}}{3}}} \\\ \Rightarrow y = 4{a^{\dfrac{2}{3}}}{b^{\dfrac{1}{3}}} \\\

So, the points of intersection of the given parabolas are O(0,0) and P (4a13b23,4a23b13)\left( {4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}},4{a^{\dfrac{2}{3}}}{b^{\dfrac{1}{3}}}} \right) .
As we know that the slope of the tangent to any curve is given by dydx\dfrac{{dy}}{{dx}}
By differentiating equation (1) on both sides with respect to x, we have
ddx(y2)=ddx(4ax) 2ydydx=4adxdx  \Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {4ax} \right) \\\ \Rightarrow 2y\dfrac{{dy}}{{dx}} = 4a\dfrac{{dx}}{{dx}} \\\
By taking 2y from the LHS to the RHS of the above equation, we get
dydx=4a2y dydx=2ay  \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4a}}{{2y}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\\
Slope of the tangent to the parabola y2=4ax{y^2} = 4ax at point P (4a13b23,4a23b13)\left( {4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}},4{a^{\dfrac{2}{3}}}{b^{\dfrac{1}{3}}}} \right) is given by
m1=2a4a23b13=a1232b13=a3232b13 m1=a132b13  \Rightarrow {m_1} = \dfrac{{2a}}{{4{a^{\dfrac{2}{3}}}{b^{\dfrac{1}{3}}}}} = \dfrac{{{a^{1 - \dfrac{2}{3}}}}}{{2{b^{\dfrac{1}{3}}}}} = \dfrac{{{a^{\dfrac{{3 - 2}}{3}}}}}{{2{b^{\dfrac{1}{3}}}}} \\\ \Rightarrow {m_1} = \dfrac{{{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}} \\\
By differentiating equation (2) on both sides with respect to x, we have
ddx(x2)=ddx(4by) 2xdxdx=4bdydx dydx=2x4b dydx=x2b  \Rightarrow \dfrac{d}{{dx}}\left( {{x^2}} \right) = \dfrac{d}{{dx}}\left( {4by} \right) \\\ \Rightarrow 2x\dfrac{{dx}}{{dx}} = 4b\dfrac{{dy}}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{4b}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{x}{{2b}} \\\
Slope of the tangent to the parabola x2=4by{x^2} = 4by at point P (4a13b23,4a23b13)\left( {4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}},4{a^{\dfrac{2}{3}}}{b^{\dfrac{1}{3}}}} \right) is given by

m2=x2b=4a13b232b=2a13b123=2a13b323 m2=2a13b13  \Rightarrow {m_2} = \dfrac{x}{{2b}} = \dfrac{{4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}}}}{{2b}} = \dfrac{{2{a^{\dfrac{1}{3}}}}}{{{b^{1 - \dfrac{2}{3}}}}} = \dfrac{{2{a^{\dfrac{1}{3}}}}}{{{b^{\dfrac{{3 - 2}}{3}}}}} \\\ \Rightarrow {m_2} = \dfrac{{2{a^{\dfrac{1}{3}}}}}{{{b^{\dfrac{1}{3}}}}} \\\

Also, we know that the angle between any two curves having slopes of their tangents as m1{m_1} and m2{m_2} respectively at a point is given by
tanθ=m2m11+m1m2\tan \theta = \dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}} where θ\theta is the angle between the curves
By putting m1=a132b13{m_1} = \dfrac{{{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}} and m2=2a13b13{m_2} = \dfrac{{2{a^{\dfrac{1}{3}}}}}{{{b^{\dfrac{1}{3}}}}} in the above formula, we get
tanθ=2a13b13a132b131+(a132b13)(2a13b13)\Rightarrow \tan \theta = \dfrac{{\dfrac{{2{a^{\dfrac{1}{3}}}}}{{{b^{\dfrac{1}{3}}}}} - \dfrac{{{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}}}}{{1 + \left( {\dfrac{{{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}}} \right)\left( {\dfrac{{2{a^{\dfrac{1}{3}}}}}{{{b^{\dfrac{1}{3}}}}}} \right)}}
By taking 2b132{b^{\dfrac{1}{3}}} as the LCM of the terms given in the numerator of the RHS of the above equation, we get
tanθ=4a13a132b131+(2a13a132b13b13) tanθ=3a132b131+(a23b23)  \Rightarrow \tan \theta = \dfrac{{\dfrac{{4{a^{\dfrac{1}{3}}} - {a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}}}}{{1 + \left( {\dfrac{{2{a^{\dfrac{1}{3}}}{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}}}} \right)}} \\\ \Rightarrow \tan \theta = \dfrac{{\dfrac{{3{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}}}}{{1 + \left( {\dfrac{{{a^{\dfrac{2}{3}}}}}{{{b^{\dfrac{2}{3}}}}}} \right)}} \\\
By taking b23{b^{\dfrac{2}{3}}} as the LCM of the terms given in the denominator of the RHS of the above equation, we get
tanθ=3a132b13b23+a23b23 tanθ=b23(3a13)2b13(b23+a23) tanθ=3b23b13(a13)2(b23+a23) tanθ=3b2313(a13)2(b23+a23) tanθ=3a13b132(b23+a23)  \Rightarrow \tan \theta = \dfrac{{\dfrac{{3{a^{\dfrac{1}{3}}}}}{{2{b^{\dfrac{1}{3}}}}}}}{{\dfrac{{{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}}}{{{b^{\dfrac{2}{3}}}}}}} \\\ \Rightarrow \tan \theta = \dfrac{{{b^{\dfrac{2}{3}}}\left( {3{a^{\dfrac{1}{3}}}} \right)}}{{2{b^{\dfrac{1}{3}}}\left( {{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}} \right)}} \\\ \Rightarrow \tan \theta = \dfrac{{3{b^{\dfrac{2}{3}}}{b^{\dfrac{{ - 1}}{3}}}\left( {{a^{\dfrac{1}{3}}}} \right)}}{{2\left( {{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}} \right)}} \\\ \Rightarrow \tan \theta = \dfrac{{3{b^{\dfrac{2}{3} - \dfrac{1}{3}}}\left( {{a^{\dfrac{1}{3}}}} \right)}}{{2\left( {{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}} \right)}} \\\ \Rightarrow \tan \theta = \dfrac{{3{a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}}}{{2\left( {{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}} \right)}} \\\
Taking inverse tangent trigonometric function on both sides of the above equation, we get
tan1(tanθ)=tan1[3a13b132(b23+a23)]\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left[ {\dfrac{{3{a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}}}{{2\left( {{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}} \right)}}} \right]
Using the formula tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta in the above equation, we get
θ=tan1[3a13b132(b23+a23)]\Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{3{a^{\dfrac{1}{3}}}{b^{\dfrac{1}{3}}}}}{{2\left( {{b^{\dfrac{2}{3}}} + {a^{\dfrac{2}{3}}}} \right)}}} \right] where θ\theta represents the angle between the given parabolas y2=4ax{y^2} = 4ax and x2=4by{x^2} = 4by at a point P (4a13b23,4a23b13)\left( {4{a^{\dfrac{1}{3}}}{b^{\dfrac{2}{3}}},4{a^{\dfrac{2}{3}}}{b^{\dfrac{1}{3}}}} \right) where these two intersect (other than the origin).

Note- The point of intersection between any two curves can be found easily by solving for the values of x and y which will satisfy the equations of both the curves. Also, the slope of the tangent to any curve at a point P ( x1,y1{x_1},{y_1} ) is evaluated by simply finding out dydx\dfrac{{dy}}{{dx}} and then putting x = x1{x_1} and y = y1{y_1} in the expression obtained.