Solveeit Logo

Question

Question: Prove that the term independent of x in the expansion of \({{\left( x+\dfrac{1}{x} \right)}^{2n}}\te...

Prove that the term independent of x in the expansion of (x+1x)2n {{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ } is 1.3.5...(2n1)n!.2n\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}.

Explanation

Solution

To prove that the term independent of x in the expansion of (x+1x)2n {{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ } is 1.3.5...(2n1)n!.2n\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}} , we will use the formula Tr+1=nCr(a)nr.br{{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}} for the expansion of (x+1x)2n {{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ } which is for the form (a+b)n{{\left( a+b \right)}^{n}} . We will get Tr+1=2nCr(x)2n2r{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-2r}} . To become independent of x, the exponent 2n2r2n-2r must be 0. Hence, n=rn=r . We can write the coefficient of term independent of x by substituting n=rn=r in 2nCr^{2n}{{C}_{r}} . We will get 2nCn^{2n}{{C}_{n}} . Now expand this using nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} to get 1×2×3×4×5×6×...×(2n1)×2nn!n!\dfrac{1\times 2\times 3\times 4\times 5\times 6\times ...\times \left( 2n-1 \right)\times 2n}{n!n!} . By rearranging, we get [1×3×5×7×...×(2n1)]×2n[1×2×3×...×n]n!n!\dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}\left[ 1\times 2\times 3\times ...\times n \right]}{n!n!} . By solving further, we will reach the required result.

Complete step-by-step solution:
We have to prove that the term independent of x in the expansion of (x+1x)2n {{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ } is 1.3.5...(2n1)n!.2n\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}} .
Let us consider (x+1x)2n {{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ } .
We know that the general term of expansion (a+b)n{{\left( a+b \right)}^{n}} is given as
Tr+1=nCr(a)nr.br{{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}}
Hence, we can write the term of expansion (x+1x)2n{{\left( x+\dfrac{1}{x} \right)}^{2n}} as
Tr+1=2nCr(x)2nr.(1x)r{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r}}.{{\left( \dfrac{1}{x} \right)}^{r}}
We can write this as
Tr+1=2nCr(x)2nr.(x)r{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r}}.{{\left( x \right)}^{-r}}
We know that am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} .
Tr+1=2nCr(x)2nrr Tr+1=2nCr(x)2n2r \begin{aligned} & \Rightarrow {{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r-r}} \\\ & \Rightarrow {{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-2r}} \\\ \end{aligned}
To become independent of x, the exponent 2n2r2n-2r must be 0. Thus, we can write
2n2r=02n-2r=0
When we solve this, we get
2n=2r n=r \begin{aligned} & 2n=2r \\\ & \Rightarrow n=r \\\ \end{aligned}
Now, we can write the coefficient of term independent of x by substituting n=rn=r in 2nCr^{2n}{{C}_{r}} .
2nCn{{\Rightarrow }^{2n}}{{C}_{n}}
We know that nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} .
2nCn=2n!n!(2nn)! 2nCn=2n!n!n! \begin{aligned} & {{\Rightarrow }^{2n}}{{C}_{n}}=\dfrac{2n!}{n!\left( 2n-n \right)!} \\\ & {{\Rightarrow }^{2n}}{{C}_{n}}=\dfrac{2n!}{n!n!} \\\ \end{aligned}
Let us expand the factorial. We know that n!=1×2×3×...×(n1)×nn!=1\times 2\times 3\times ...\times \left( n-1 \right)\times n . Hence,
2n!n!n!=1×2×3×4×5×6×...×(2n1)×2nn!n!\dfrac{2n!}{n!n!}=\dfrac{1\times 2\times 3\times 4\times 5\times 6\times ...\times \left( 2n-1 \right)\times 2n}{n!n!}
We can write this as follows by collecting odd and even terms separately.
[1×3×5×7×...×(2n1)]×[2×4×6×...×2n]n!n!\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times \left[ 2\times 4\times 6\times ...\times 2n \right]}{n!n!}
Let us now take 2 commons from the even terms. We will get
[1×3×5×7×...×(2n1)]×2n[1×2×3×...×n]n!n!\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}\left[ 1\times 2\times 3\times ...\times n \right]}{n!n!}
We know that n!=1×2×3×...×nn!=1\times 2\times 3\times ...\times n . Hence,
[1×3×5×7×...×(2n1)]×2nn!n!n!\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}n!}{n!n!}
Now, we can cancel n! from numerator and denominator. We will get
[1×3×5×7×...×(2n1)]×2nn!\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}}{n!}
Hence, the term independent of x in the expansion of (x+1x)2n {{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ } is 1.3.5...(2n1)n!.2n\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}} .
Thus proved.

Note: You may make mistake when writing the formula Tr+1=nCr(a)nr.br{{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}} as Tr+1=nCr(b)nr.ar{{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( b \right)}^{n-r}}.{{a}^{r}} . Also, an error can be expected when writing nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} as nCr=n!r!(n+r)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n+r \right)!} . When taking 2 outside from the even set, be careful to write 2n{{2}^{n}} instead of 2.