Solveeit Logo

Question

Question: Prove that the radius of the right circular cylinder of greatest curved surface area which can be in...

Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

Explanation

Solution

Hint: First of all, draw the diagram for the problem with the given data which will give us a clear idea of what we have to find. Then find the curved surface area of the cylinder and then prove the problem by using a second derivative test.

Complete step-by-step answer:

Let OC=r{\text{OC}} = r be the radius of the cone
OA=h{\text{OA}} = h be the height of the cone
OAQ=α\angle {\text{OAQ}} = \alpha be the semi vertical angle of the cone
Let OE=x{\text{OE}} = x be the radius of the cylinder
OO’={\text{OO'}} = height of the cylinder

From the diagram,
In ΔAO’Q\Delta {\text{AO'Q}}

tanα=O’QAO’ tanα=OEOA - O’O tanα=xhO’O...........................................(1)  \tan \alpha = \dfrac{{{\text{O'Q}}}}{{{\text{AO'}}}} \\\ \tan \alpha = \dfrac{{{\text{OE}}}}{{{\text{OA - O'O}}}} \\\ \tan \alpha = \dfrac{x}{{h - {\text{O'O}}}}...........................................\left( 1 \right) \\\

In ΔAOC\Delta {\text{AOC}}

tanα=OCOA tanα=rh...........................................(2)  \tan \alpha = \dfrac{{{\text{OC}}}}{{{\text{OA}}}} \\\ \tan \alpha = \dfrac{r}{h}...........................................\left( 2 \right) \\\

From equations (1) and (2), we have

xhO’O=rh hxr=hO’O O’O=hrhxr O’O=h(rx)r  \dfrac{x}{{h - {\text{O'O}}}} = \dfrac{r}{h} \\\ \dfrac{{hx}}{r} = h - {\text{O'O}} \\\ {\text{O'O}} = \dfrac{{hr - hx}}{r} \\\ {\text{O'O}} = \dfrac{{h\left( {r - x} \right)}}{r} \\\

We know that the curved surface of cylinder =2π×Radius×Height = 2\pi \times {\text{Radius}} \times {\text{Height}}
So, curved surface area of cylinder is given by

S=2π×x×O’O S=2πxh(rx)r S=2πhr(rxx2) (where k=2πhr is a constant)  S = 2\pi \times x \times {\text{O'O}} \\\ S = 2\pi xh\dfrac{{\left( {r - x} \right)}}{r} \\\ S = \dfrac{{2\pi h}}{r}\left( {rx - {x^2}} \right){\text{ }}\left( {{\text{where k}} = \dfrac{{2\pi h}}{r}{\text{ is a constant}}} \right) \\\

Now, differentiating S w.r.t xx i.e., S(x)S'\left( x \right)

S=ddx(k(rxx2)) S=kddx(rxx2) S=k(r2x)  S' = \dfrac{d}{{dx}}\left( {k\left( {rx - {x^2}} \right)} \right) \\\ S' = k\dfrac{d}{{dx}}\left( {rx - {x^2}} \right) \\\ \therefore S' = k\left( {r - 2x} \right) \\\

Now, differentiating S(x)S'\left( x \right) w.r.t again xx i.e., S(x)S''\left( x \right)

S=ddx(k(r2x)) S=kddx(r2x) S=k(02) S=2k  S'' = \dfrac{d}{{dx}}\left( {k\left( {r - 2x} \right)} \right) \\\ S'' = k\dfrac{d}{{dx}}\left( {r - 2x} \right) \\\ S'' = k\left( {0 - 2} \right) \\\ \therefore S'' = - 2k \\\

We know that the minimum or maximum value of S occurs at S(x)=0S'\left( x \right) = 0
So, put S(x)=0S'\left( x \right) = 0

k(r2x)=0 x=r2  k\left( {r - 2x} \right) = 0 \\\ \therefore x = \dfrac{r}{2} \\\

Now, finding S(x)S''\left( x \right) at x=r2x = \dfrac{r}{2}, we have

Sx=r2=2k<0 Sx=r2<0  {{S''}_{x = \dfrac{r}{2}}} = - 2k < 0 \\\ \therefore {{S''}_{x = \dfrac{r}{2}}} < 0 \\\

Therefore, x=r2x = \dfrac{r}{2} is maxima of S.
As the second derivative of the curved surface area of the cylinder is less than zero, the radius of cylinder with greatest curved surface area which can be inscribed in a given cone is half of that cone.

Note: The curved surface area of the cylinder with radius rr and height hh is given by S=2πrhS = 2\pi rh. The second derivative test is used to determine whether a stationary point is a local maximum or a local minimum.