Question
Mathematics Question on Straight lines
Prove that the product of the lengths of the perpendiculars drawn from the points (a2−b2,0) and (−a2−b2,0) to the line axcosθ+bysinθ=1 is b2.
The equation of the given line is axcosθ+bysinθ=1
or bxcosθ+aysinθ−ab=0.....(1)
Length of the perpendicular from point (a2−b2,0) to line (1) is
P1=b2cos2θ+a2sin2θ∣bcosθ(a2−b2,0)+asinθ(0)−ab∣
=b2cos2θ+a2sin2θ∣bcosθa2−b2−ab∣.....(2)
Length of the perpendicular from point (−a2−b2,0) to line (2) is
P2=b2cos2θ+a2sin2θ∣bcosθ(−a2−b2,0)+asinθ(0)−ab∣
=b2cos2θ+a2sin2θ∣bcosθa2−b2+ab∣.....(3)
On multiplying equations (2) and (3), we obtain.
P1P2=(b2cos2θ+a2sin2θ)2∣bcosθa2−b2−ab∣∣bcosθa2−b2+ab∣
=(b2cos2θ+a2sin2θ)∣bcosθa2−b2−ab∣∣bcosθa2−b2+ab∣
=(b2cos2θ+a2sin2θ)∣b2cos2θ(a2−b2)−a2b2∣
=(b2cos2θ+a2sin2θ)∣a2b2cos2θ−b4cos2θ−a2b2∣
=b2cos2θ+a2sin2θb2∣a2cos2θ−b2cos2θ−a2∣
=b2cos2θ+a2sin2θb2∣a2cos2θ−b2cos2θ−a2sin2θ−a2cos2θ∣ [sin2θ+cos2θ=1]
=b2cos2θ+a2sin2θb2∣−(b2cos2θ+a2sin2θ)∣
=b2cos2θ+a2sin2θb2(b2cos2θ+a2sin2θ)
=b2.
Hence, proved.