Solveeit Logo

Question

Mathematics Question on Straight lines

Prove that the product of the lengths of the perpendiculars drawn from the points (a2b2,0)\left(\sqrt{a^2-b^2},0\right) and (a2b2,0)\left(-\sqrt{a^2-b^2},0\right) to the line xacosθ+ybsinθ=1\frac{x}{a}cosθ+\frac{y}{b}sinθ=1 is b2b^2.

Answer

The equation of the given line is xacosθ+ybsinθ=1\frac{x}{a} cosθ+\frac{y}{b}sinθ=1

or bx  cosθ+ay  sinθab=0.....(1)bx\space cosθ+ay\space sinθ-ab=0 .....(1)

Length of the perpendicular from point (a2b2,0)\left(\sqrt{a^2-b^2},0\right) to line (1) is

P1=bcosθ(a2b2,0)+asinθ(0)abb2cos2θ+a2sin2θP_1=\frac{\left|bcosθ(\sqrt{a^2-b^2},0)+asinθ(0)-ab\right|}{\sqrt{b^2cos^2θ+a^2sin^2θ}}

=bcosθa2b2abb2cos2θ+a2sin2θ.....(2)=\frac{\left|bcosθ\sqrt{a^2-b^2}-ab\right|}{\sqrt{b^2cos^2θ+a^2sin^2θ }}.....(2)

Length of the perpendicular from point (a2b2,0)\left(-\sqrt{a^2-b^2},0\right) to line (2) is

P2=bcosθ(a2b2,0)+asinθ(0)abb2cos2θ+a2sin2θP_2=\frac{\left|bcosθ(-\sqrt{a^2-b^2},0)+asinθ(0)-ab\right|}{\sqrt{b^2cos^2θ+a^2sin^2θ}}

=bcosθa2b2+abb2cos2θ+a2sin2θ.....(3)=\frac{\left|bcosθ\sqrt{a^2-b^2}+ab\right|}{\sqrt{b^2cos^2θ+a^2sin^2θ }}.....(3)

On multiplying equations (2) and (3), we obtain.

P1P2=bcosθa2b2abbcosθa2b2+ab(b2cos2θ+a2sin2θ)2P_1P_2=\frac{\left|bcosθ\sqrt{a^2-b^2}-ab\right|\left|bcosθ\sqrt{a^2-b^2}+ab\right|}{\left(\sqrt{b^2cos^2θ+a^2sin^2θ}\right)^2}

=bcosθa2b2abbcosθa2b2+ab(b2cos2θ+a2sin2θ)=\frac{\left|bcosθ\sqrt{a^2-b^2}-ab\right|\left|bcosθ\sqrt{a^2-b^2}+ab\right|}{\left(b^2cos^2θ+a^2sin^2θ\right)}

=b2cos2θ(a2b2)a2b2(b2cos2θ+a2sin2θ)= \frac{\left|b^2cos^2θ(a^2-b^2)-a^2b^2\right|}{(b^2cos^2θ+a^2sin^2θ)}

=a2b2cos2θb4cos2θa2b2(b2cos2θ+a2sin2θ)= \frac{\left|a^2b^2cos^2θ-b^4cos^2θ-a^2b^2\right|}{(b^2cos^2θ+a^2sin^2θ)}

=b2a2cos2θb2cos2θa2b2cos2θ+a2sin2θ= \frac{b^2\left|a^2cos^2θ-b^2cos^2θ-a^2\right|}{b^2cos^2θ+a^2sin^2θ}

=b2a2cos2θb2cos2θa2sin2θa2cos2θb2cos2θ+a2sin2θ= \frac{b^2\left|a^2cos^2θ-b^2cos^2θ-a^2sin^2θ-a^2cos^2θ\right|}{b^2cos^2θ+a^2sin^2θ} [sin2θ+cos2θ=1][sin^2θ+cos^2θ=1]

=b2(b2cos2θ+a2sin2θ)b2cos2θ+a2sin2θ=\frac{ b^2\left|-\left(b^2cos^2θ+a^2sin^2θ\right)\right|}{b^2cos^2θ+a^2sin^2θ}

=b2(b2cos2θ+a2sin2θ)b2cos2θ+a2sin2θ= \frac{b^2\left(b^2cos^2θ+a^2sin^2θ\right)}{b^2cos^2θ+a^2sin^2θ}

=b2.= b^2.
Hence, proved.