Solveeit Logo

Question

Question: Prove that the points \[\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right)\...

Prove that the points (a,0),(0,b) and (1,1)\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right) are collinear if, 1a+1b=1\dfrac{1}{a} + \dfrac{1}{b} = 1.

Explanation

Solution

Hint: First of all, find the area of the triangle of the given points. The given points are collinear if the area formed by the three points is zero. Use the given condition to prove the collinearity of the given points.

Complete step-by-step answer:
Let the given points be (a,0){\text{A }}\left( {a,0} \right), (0,b){\text{B }}\left( {0,b} \right) and (1,1){\text{C }}\left( {1,1} \right)
Given 1a+1b=1\dfrac{1}{a} + \dfrac{1}{b} = 1
i.e., 1a+1b1=0...........................................(1)\dfrac{1}{a} + \dfrac{1}{b} - 1 = 0...........................................\left( 1 \right)
If the above points are collinear, they will lie on the same line i.e., they will not form a triangle.
Therefore, area of ΔABC=0\Delta ABC = 0
We know that the area of the triangle formed by the points A (x1,y1)\left( {{x_1},{y_1}} \right), B (x2,y2)\left( {{x_2},{y_2}} \right) and C (x3,y3)\left( {{x_3},{y_3}} \right) is given by Δ=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]\Delta = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]
So, area of ΔABC\Delta ABC is given by

Δ=12[a(b1)+0(10)+1(0b)] Δ=12[a(b1)+0(1)+1(b)] Δ=12[abab] \Rightarrow \Delta = \dfrac{1}{2}\left[ {a\left( {b - 1} \right) + 0\left( {1 - 0} \right) + 1\left( {0 - b} \right)} \right] \\\ \Rightarrow \Delta = \dfrac{1}{2}\left[ {a\left( {b - 1} \right) + 0\left( 1 \right) + 1\left( { - b} \right)} \right] \\\ \Rightarrow \Delta = \dfrac{1}{2}\left[ {ab - a - b} \right] \\\

Multiplying and dividing with ababon left-hand side, we get

Δ=12(ab)[ababab] Δ=ab2[1aabbab] Δ=ab2[11b1a] Δ=ab2[1a+1b1] Δ=ab2(0) [using (1)] Δ=0 \Rightarrow \Delta = \dfrac{1}{2}\left( {ab} \right)\left[ {\dfrac{{ab - a - b}}{{ab}}} \right] \\\ \Rightarrow \Delta = \dfrac{{ab}}{2}\left[ {1 - \dfrac{a}{{ab}} - \dfrac{b}{{ab}}} \right] \\\ \Rightarrow \Delta = \dfrac{{ab}}{2}\left[ {1 - \dfrac{1}{b} - \dfrac{1}{a}} \right] \\\ \Rightarrow \Delta = \dfrac{{ - ab}}{2}\left[ {\dfrac{1}{a} + \dfrac{1}{b} - 1} \right] \\\ \Rightarrow \Delta = \dfrac{{ - ab}}{2}\left( 0 \right){\text{ }}\left[ {\because {\text{using }}\left( 1 \right)} \right] \\\ \therefore \Delta = 0 \\\

Hence the points (a,0),(0,b) and (1,1)\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right) are collinear.

Note: We can prove the collinearity of the three by another method i.e., if the sum of the lengths of any two-line segments among AB, BC, and CA is equal to the length of the remaining line segment, then the points are said to be in collinear.