Solveeit Logo

Question

Question: Prove that the points, \[A( - 3, - 2),B(5, - 2),C(9,3),D(1,3)\] are the vertices of a parallelogram....

Prove that the points, A(3,2),B(5,2),C(9,3),D(1,3)A( - 3, - 2),B(5, - 2),C(9,3),D(1,3) are the vertices of a parallelogram.

Explanation

Solution

Here we are given 4 points. To prove that it is a parallelogram, we need to calculate the length of the sides, we use the distance formula for it. And then check if opposite sides are equal.

Complete step-by-step answer:
We know that the distance between the two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is,
d=(x2x1)2+(y2y1)2  d = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;
Let the given vertices be A=(3,2),  B=(5,2),  C=(9,3)A = \left( { - 3, - 2} \right),\;B = \left( {5, - 2} \right),\;C = (9,3) and D=(1,3)D = \left( {1,3} \right)

We first find the distance between A=(3,2)  A = \left( { - 3, - 2} \right)\;and B=(5,2)    B = \left( {5, - 2} \right)\;\;as follows:
AB=(x2x1)2+(y2y1)2  AB = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;
On substituting the values of A=(3,2)  A = \left( { - 3, - 2} \right)\;and B=(5,2)    B = \left( {5, - 2} \right)\;\;, we get,
=(5(3))2+((2)(2))2  = \sqrt {{{\left( {5 - ( - 3)} \right)}^2} + {{\left( {( - 2) - ( - 2)} \right)}^2}} \;
On simplifying we get,
=(8)2+(0)2  = \sqrt {{{\left( {8} \right)}^2} + {{\left( {0} \right)}^2}} \;
=64= \sqrt {64}
On taking positive root we get,
=8= 8units
Similarly, the distance between B=(5,2)  B = \left( {5, - 2} \right)\;and C=(9,3)  C = \left( {9,3} \right)\; is:
BC=(x2x1)2+(y2y1)2  BC = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;
On substituting the values of B=(5,2)  B = \left( {5, - 2} \right)\;and C=(9,3)  C = \left( {9,3} \right)\;, we get,
=(95)2+(3(2))2  = \sqrt {{{\left( {9 - 5} \right)}^2} + {{\left( {3 - ( - 2)} \right)}^2}} \;
On simplifying we get,
=(4)2+(5)2  = \sqrt {{{\left( 4 \right)}^2} + {{\left( {5} \right)}^2}} \;
=16+25  = \sqrt {16 + 25} \;
=41  = \sqrt {41} \;units
Now, the distance between C=(9,3)  C = \left( {9,3} \right)\; and D=(1,3)  D = (1,3)\;is:
CD=(x2x1)2+(y2y1)2  CD = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;
On substituting the value of C=(9,3)  C = \left( {9,3} \right)\; and D=(1,3)  D = (1,3)\;, we get,
=(19)2+(33)2  = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \;
On further simplification we get,
=(8)2+(0)2  = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} \;
=64  = \sqrt {64} \;
On taking positive square root we get,
=8= 8units
Now, the distance between D=(1,3)  D = \left( {1,3} \right)\;and A=(3,2)  A = \left( { - 3, - 2} \right)\; is:
DA=(x2x1)2+(y2y1)2  DA = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;
On substituting the values of D=(1,3)  D = \left( {1,3} \right)\;and A=(3,2)  A = \left( { - 3, - 2} \right)\;, we get,
=(31)2+(23)2  = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( { - 2 - 3} \right)}^2}} \;
On simplifying further we get,
=(4)2+(5)2  = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 5} \right)}^2}} \;
=16+25  = \sqrt {16 + 25} \;
=41= \sqrt {41}units
We also know that if the opposite sides have equal side lengths, then ABCD is a parallelogram.
Here, since the lengths of the opposite sides are equal that is:
AB=CD=8AB = CD = 8units and BC=DA=41BC = DA = \sqrt {41} units.
Hence, the given vertices are the vertices of a parallelogram.

Note: There are also other important properties of parallelograms to know:
1.Opposite sides are congruent (AB = DC).\left( {AB{\text{ }} = {\text{ }}DC} \right).
2.Opposite angles are congruent (D = B).\left( {D{\text{ }} = {\text{ }}B} \right).
3.Consecutive angles are supplementary (A + D = 180).\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).
4.If one angle is right, then all angles are right.
5.The diagonals of a parallelogram bisect each other.
6.Each diagonal of a parallelogram separates it into two congruent triangles.