Solveeit Logo

Question

Question: Prove that the minimum value of \(a\sec x - b\tan x\) is \(\sqrt {{a^2} - {b^2}} \) where a and b is...

Prove that the minimum value of asecxbtanxa\sec x - b\tan x is a2b2\sqrt {{a^2} - {b^2}} where a and b is positive and a>b.

Explanation

Solution

Here it is a trigonometric question. We will solve this by converting sec x into tan form or vice versa. And if we are given a function f(x) then the minimum value will be obtained by putting f’(x)=0 and for more than one value, f’’(x)>0 will give minimum and f’’(x)<0 will give maximum value.

Complete step-by-step answer:
Step-1
Let f(x) =asecxbtanxa\sec x - b\tan x
Differentiating the above function we get,
f(x)=ddx(asecxbtanx)f'(x) = \dfrac{d}{{dx}}(a\sec x - b\tan x)
Step-2
Solving this we get,
f(x)=ddxasecxddxbtanxf'(x) = \dfrac{d}{{dx}}a\sec x - \dfrac{d}{{dx}}b\tan x
Or, f(x)=addxsecxbddxtanxf'(x) = a\dfrac{d}{{dx}}\sec x - b\dfrac{d}{{dx}}\tan x
Or, f(x)=asecxtanxbsec2xf'(x) = a\sec x \cdot \tan x - b{\sec ^2}x
Step-3
For the minimum value,
f’(x)=0
Step-4
Hence, asecxtanxbsec2x=0a\sec x \cdot \tan x - b{\sec ^2}x = 0
secx(atanxbsecx)=0\Rightarrow \sec x(a\tan x - b\sec x) = 0
Step-6
sec x can never be equal to 0
Then, a tan x – b sec x = 0
Step-7
Cancelling cos x on both the side we get
a sin x = b
Or, sin x =b/a
Step-8
We know that in a triangle, sin x = perpendicular/hypotenuse
Here p = b and h = a
Therefore, base b=h2p2b = \sqrt {{h^2} - {p^2}}
b=a2b2\Rightarrow b = \sqrt {{a^2} - {b^2}}
secx=aa2b2andtanx=ba2b2\therefore \sec x = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}and\tan x = \dfrac{b}{{\sqrt {{a^2} - {b^2}} }}
Step-9
Putting these values in f(x) =asecxbtanxa\sec x - b\tan xwe get,
f(x)=a2b2\Rightarrow f'(x) = \sqrt {{a^2} - {b^2}}
f(x)=a2b2a2b2\Rightarrow f'(x) = \dfrac{{{a^2} - {b^2}}}{{\sqrt {{a^2} - {b^2}} }}
f(x)=a2b2\Rightarrow f'(x) = \sqrt {{a^2} - {b^2}}
Step-10
Hence it is proved that the minimum value of asecxbtanxa\sec x - b\tan xis a2b2\sqrt {{a^2} - {b^2}} where a and b is positive and a>b.

Note: Sec value can never be zero.
To get the minimum value f’(x) must be equal to 0.
You can also solve the same problem by converting sec x into tan form and then by differentiating it with respect to x.