Solveeit Logo

Question

Question: Prove that the locus of the poles of chords which subtend a right angle at a fixed point \[\left( h,...

Prove that the locus of the poles of chords which subtend a right angle at a fixed point (h,k)\left( h,k \right) is ax2hy2+(4a2+2ah)x2aky+a(h2+k2)=0a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{h}^{2}}+{{k}^{2}} \right)=0

Explanation

Solution

Hint: Length of projection of a\overrightarrow{a} on b\overrightarrow{b}is given as a.bb\left| \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{b} \right|} \right|.

We will consider the equation of the parabola to be y2=4ax{{y}^{2}}=4ax.
We know , the equation of axis of this parabola is y=0y=0

Let us assume two points P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right) and Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right) on the parabola.
Now, we will find the equation of chord PQPQ in vector form.
We know , the equation of line joining the points (x1,y1)({{x}_{1}},{{y}_{1}}) and (x2,y2)({{x}_{2}},{{y}_{2}}), in vector form , is given as
L=(x2x1)i^+(y2y1)j^\overrightarrow{L}=({{x}_{2}}-{{x}_{1}})\widehat{i}+({{y}_{2}}-{{y}_{1}})\widehat{j}.
So , the equation of the line joining P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right) and Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right) is given as
PQ=(at22at12)i^+(2at22at1)j^\overrightarrow{PQ}=\left( at_{2}^{2}-at_{1}^{2} \right)\hat{i}+\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)\hat{j}
Now, we need to find the locus of the midpoint of PQPQ.
So , let the midpoint of PQPQ be M(h,k)M\left( h,k \right).
Now, we know that the coordinates of the midpoint of the line joining two points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is given as: (x1+x22,y1+y22)\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)
So , h=at12+at222....(i)h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( i \right) and k=2at1+2at22....(ii)k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( ii \right)
From (i)\left( i \right) we get (at12+at22)=2h\left( at_{1}^{2}+at_{2}^{2} \right)=2h
From (ii)\left( ii \right) we get (at1+at2)=k\left( a{{t}_{1}}+a{{t}_{2}} \right)=k
Now , we will find the projection of PQ\overrightarrow{PQ} on line ll.
Let this projection be AB\overrightarrow{AB}.
Now , in the question, it is given that the length of projection of chord on the line is a constant CC.
We know , the length of projection of a\overrightarrow{a} on b\overrightarrow{b}is given as
a.ba\left| \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|} \right|
So , the length of projection of PQ\overrightarrow{PQ} on AB\overrightarrow{AB} is given as
PQ.ABAB=C.....(iii)\left| \dfrac{\overrightarrow{PQ}.\overrightarrow{AB}}{\left| \overrightarrow{AB} \right|} \right|=C.....\left( iii \right)
Now, we know the length of AB=C\overrightarrow{AB}=C and line ABABis inclined at angle α\alpha to the axis.
We know , the equation of line of length rr and inclined at an angle θ\theta with the xx-axis is given as
L=rcosθi^+rsinθj^\overrightarrow{L}=r\cos \theta \widehat{i}+r\sin \theta \widehat{j}
So , equation of AB\overrightarrow{AB}in vector form is
AB=Ccosαi^+Csinαj^\overrightarrow{AB}=C\cos \alpha \hat{i}+C\sin \alpha \hat{j}
Substituting the equation of AB\overrightarrow{AB} in equation (iii)\left( iii \right), we get
((at22at12)i^+(2at22at1)j^).(Ccosαi^+Csinαj^)C=C\left| \dfrac{\left( \left( at_{2}^{2}-at_{1}^{2} \right)\hat{i}+\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)\hat{j} \right).\left( C\cos \alpha \hat{i}+C\sin \alpha \hat{j} \right)}{C} \right|=C
C(at22at12)cosα+Csinα(2at22at2)C=C\Rightarrow \left| \dfrac{C\left( at_{2}^{2}-at_{1}^{2} \right)\cos \alpha +C\sin \alpha \left( 2a{{t}_{2}}-2a{{t}_{2}} \right)}{C} \right|=C
a[(t22t12)cosα+2sinα(t2t1)]=C\Rightarrow \left| a\left[ \left( t_{2}^{2}-t_{1}^{2} \right)\cos \alpha +2\sin \alpha \left( {{t}_{2}}-{{t}_{1}} \right) \right] \right|=C
Now , we will square both sides to remove the modulus sign.
On squaring both sides, we get
a2(t2t1)2[(t1+t2)cosα+2sinα]2=C2{{a}^{2}}{{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}{{\left[ \left( {{t}_{1}}+{{t}_{2}} \right)\cos \alpha +2\sin \alpha \right]}^{2}}={{C}^{2}}
a2(t22+t222t1t2)[(t1+t2)2cos2α+4sin2α+4(t1+t2)cosαsinα]=C2.....(iv)\Rightarrow {{a}^{2}}\left( t_{2}^{2}+t_{2}^{2}-2{{t}_{1}}{{t}_{2}} \right)\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}{{\cos }^{2}}\alpha +4{{\sin }^{2}}\alpha +4\left( {{t}_{1}}+{{t}_{2}} \right)\cos \alpha \sin \alpha \right]={{C}^{2}}.....(iv)
Now , we know a(t12+t22)=2ha\left( t_{1}^{2}+t_{2}^{2} \right)=2h [from (i)(i)]
t12+t22=2ha\Rightarrow t_{1}^{2}+t_{2}^{2}=\dfrac{2h}{a}
And a(t1+t2)=ka\left( {{t}_{1}}+{{t}_{2}} \right)=k[from (ii)(ii)]
t1+t2=ka\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}
t12+t22+2t1t2=k2a2\Rightarrow t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}
2t1t2=k2a22ha\Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}
Substituting in (iv)\left( iv \right), we get
a2(2hak2a2+2ha)[(ka)2cos2α+4sin2α+4kacosαsinα]=C2{{a}^{2}}\left( \dfrac{2h}{a}-\dfrac{{{k}^{2}}}{{{a}^{2}}}+\dfrac{2h}{a} \right)\left[ {{\left( \dfrac{k}{a} \right)}^{2}}{{\cos }^{2}}\alpha +4{{\sin }^{2}}\alpha +4\dfrac{k}{a}\cos \alpha \sin \alpha \right]={{C}^{2}}
(4ahk2)[k2cos2α+4a2sin2α+4akcosαsinα]=a2C2\Rightarrow \left( 4ah-{{k}^{2}} \right)\left[ {{k}^{2}}{{\cos }^{2}}\alpha +4{{a}^{2}}{{\sin }^{2}}\alpha +4ak\cos \alpha \sin \alpha \right]={{a}^{2}}{{C}^{2}}
(4ahk2)[kcosα+2asinα]2=a2C2.........\Rightarrow \left( 4ah-{{k}^{2}} \right){{\left[ k\cos \alpha +2a\sin \alpha \right]}^{2}}={{a}^{2}}{{C}^{2}}......... equation(v)(v)
Now , to get the equation of the locus of M(h,k)M\left( h,k \right), we will substitute (x,y)(x,y)in place of (h,k)\left( h,k \right) in equation (v)(v).
So , the locus of M(h,k)M\left( h,k \right) is given as
(4axy2)(ycosα+2asinα)2=a2C2\left( 4ax-{{y}^{2}} \right){{\left( y\cos \alpha +2a\sin \alpha \right)}^{2}}={{a}^{2}}{{C}^{2}}
Or (y24ax)(ycosα+2asinα)2+a2C2=0\left( {{y}^{2}}-4ax \right){{\left( y\cos \alpha +2a\sin \alpha \right)}^{2}}+{{a}^{2}}{{C}^{2}}=0
Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken