Solveeit Logo

Question

Question: Prove that the locus of the middle points of the portions of tangents included between the axes is t...

Prove that the locus of the middle points of the portions of tangents included between the axes is the curve a2x2+b2y2=4\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=4.

Explanation

Solution

To solve this question what we will do is, we will substitute the point of parabola in the equation of tangents then we will replace the ( x, y ) by ( h, k ) and find the value of midpoint of line AB in terms of cosine and sine. And, then we will use identity to find the locus of the middle points of the portions of tangents included between the axes .

Complete step by step solution:

We know that equation of ellipse is x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1. Now. Let AB be tangent on ellipse x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 and the point at which curve x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 and tangent AB meet be P(acosθ,bsinθ)P(a\cos \theta ,b\sin \theta ) that is point P(acosθ,bsinθ)P(a\cos \theta ,b\sin \theta ) lies on both tangent and curve x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1.
Now, equation of tangent will be equal to, xx1a2+yy1b2=1\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1 at point P(acosθ,bsinθ)P(a\cos \theta ,b\sin \theta ), where (x1,y1)({{x}_{1}},{{y}_{1}}) are any point on tangent line.
Substituting point P(acosθ,bsinθ)P(a\cos \theta ,b\sin \theta ) in xx1a2+yy1b2=1\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1 to get equation of tangent, we get
x(acosθ)a2+y(bsinθ)b2=1\dfrac{x\cdot (acos\theta )}{{{a}^{2}}}+\dfrac{y\cdot (b\sin \theta )}{{{b}^{2}}}=1
At, point A, y = 0
So, x(cosθ)a=1\dfrac{x\cdot (cos\theta )}{a}=1
Or, x=acosθx=\dfrac{a}{\cos \theta }
So, coordinate of A is equals to, (acosθ,0)\left( \dfrac{a}{\cos \theta },0 \right)
Similarly, At, point B, x = 0
So, y(sinθ)b=1\dfrac{y\cdot (sin\theta )}{b}=1
Or, y=bsinθy=\dfrac{b}{\sin \theta }
So, coordinate of A is equals to, (0,bsinθ)\left( 0,\dfrac{b}{\sin \theta } \right)
Now, let M be the mid point of line AB, using midpoint formula (x1+x22,y1+y22)\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) ,
Coordinates of M will be (acosθ+02,0+bsinθ2)\left( \dfrac{\dfrac{a}{\cos \theta }+0}{2},\dfrac{0+\dfrac{b}{\sin \theta }}{2} \right)
So, M(a2cosθ,b2sinθ)\left( \dfrac{a}{2\cos \theta },\dfrac{b}{2\sin \theta } \right)= ( h, k )
So, h = a2cosθ\dfrac{a}{2\cos \theta }and k = b2sinθ\dfrac{b}{2\sin \theta }
Finding value of cosθ\cos \theta and sinθ\sin \theta , we get
cosθ=a2h\cos \theta =\dfrac{a}{2h} and sinθ=b2k\sin \theta =\dfrac{b}{2k}
We know that, cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Putting values of cosθ\cos \theta and sinθ\sin \theta in cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1, we get
(a2h)2+(b2k)2=1{{\left( \dfrac{a}{2h} \right)}^{2}}+{{\left( \dfrac{b}{2k} \right)}^{2}}=1
On simplifying, we get
14((ah)2+(bk)2)=1\dfrac{1}{4}\left( {{\left( \dfrac{a}{h} \right)}^{2}}+{{\left( \dfrac{b}{k} \right)}^{2}} \right)=1
(ah)2+(bk)2=4{{\left( \dfrac{a}{h} \right)}^{2}}+{{\left( \dfrac{b}{k} \right)}^{2}}=4
Replacing, locus points ( h, k ) by ( x, y ) we get
(ax)2+(by)2=4{{\left( \dfrac{a}{x} \right)}^{2}}+{{\left( \dfrac{b}{y} \right)}^{2}}=4
Hence, the locus of the middle points of the portions of tangents included between the axes is the curve a2x2+b2y2=4\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=4.

Note: While solving this question do not confuse between the equation of ellipse. x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 and equation tangent xx1a2+yy1b2=1\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1 as here (x1,y1)({{x}_{1}},{{y}_{1}}) are any point on tangent line.
Calculation must be accurate and avoid making mistakes as this may give incorrect answers.