Solveeit Logo

Question

Question: Prove that the locus of the mid-point of chords of the parabola \({y^2} = 4ax\) which touches the pa...

Prove that the locus of the mid-point of chords of the parabola y2=4ax{y^2} = 4ax which touches the parabola y2=4bx{y^2} = 4bx isy2(2ab)=4a2x{y^2}\left( {2a - b} \right) = 4{a^2}x.

Explanation

Solution

Hint: Midpoint of chord touches another parabola its mean that the chord will be a tangent to the parabola, so consider chord a tangent toy2=4bx{y^2} = 4bx parabola. Consider the points on parabola in the form of(at2,2at)(a{t^2},2at) .

Complete step-by-step answer:
Let the given parabola y2=4ax{y^2} = 4ax has a chord, which cuts parabola at (at12,2at1)(a{t_1}^2,2a{t_1})& (at22,2at2)(a{t_2}^2,2a{t_2}) .

Let the given midpoint of chord AB be(h,k)\left( {h,k} \right) .
We know midpoint of a line joining two point (x,y)&(m,n)\left( {x,y} \right)\& \left( {m,n} \right) =(x+m2,y+n2)\left( {\dfrac{{x + m}}{2},\dfrac{{y + n}}{2}} \right) .
h=(at21+at222)h = \left( {\dfrac{{a{t^2}_1 + a{t^2}_2}}{2}} \right) & k=(2at1+2at22)k = \left( {\dfrac{{2a{t_1} + 2a{t_2}}}{2}} \right)
h=a2(t21+t22)h = \dfrac{a}{2}\left( {{t^2}_1 + {t^2}_2} \right) …(1)
& k=a(t1+t2)k = a\left( {{t_1} + {t_2}} \right) …(2)
Now,
2h=a(t21+t22)2h = a\left( {{t^2}_1 + {t^2}_2} \right)
Now manipulating it as (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab ,
2h=a((t1+t2)22t1t2)2h = a{\left( {({t_1} + {t_2}} \right)^2} - 2{t_1}{t_2})
From equation (2).
..
t1t2=k22a2ha{t_1}{t_2} = \dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a} …(3)
Now find the equation of chord passing through two points at (at12,2at1)(a{t_1}^2,2a{t_1})& (at22,2at2)(a{t_2}^2,2a{t_2}) .
Using two point formula of equation of line yy1=y2y1x1x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_1} - {x_1}}}\left( {x - {x_1}} \right) .
Then,
y2at1=(2at22at1)at22at21(xat21)y - 2a{t_1} = \dfrac{{\left( {2a{t_2} - 2a{t_1}} \right)}}{{a{t^2}_2 - a{t^2}_1}}\left( {x - a{t^2}_1} \right)
Taking a common from numerator and denominator & then expand denominator.(a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) .
y2at1=2(t2t1)t22t21(xat21) y2at1=2(t2t1)(t2+t1)(t2t1)(xat21) y2at1=2(t2+t1)(xat21) (y2at1)(t2+t1)=2(xat21) y(t2+t1)2at1t22at21=2x2at21  y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{{t^2}_2 - {t^2}_1}}\left( {x - a{t^2}_1} \right) \\\ y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{({t_2} + {t_1})\left( {{t_2} - {t_1}} \right)}}\left( {x - a{t^2}_1} \right) \\\ y - 2a{t_1} = \dfrac{2}{{({t_2} + {t_1})}}\left( {x - a{t^2}_1} \right) \\\ (y - 2a{t_1})({t_2} + {t_1}) = 2\left( {x - a{t^2}_1} \right) \\\ y({t_2} + {t_1}) - 2a{t_1}{t_2} - 2a{t^2}_1 = 2x - 2a{t^2}_1 \\\
2at21- 2a{t^2}_1 will be cancel out from both side
Then, we get
y(t2+t1)2at1t2=2x   y({t_2} + {t_1}) - 2a{t_1}{t_2} = 2x \\\ \\\
Equation of chord will be
y=2x(t2+t1)+2at1t2(t2+t1)y=\dfrac{2x}{{({t_2}+{t_1})}} + \dfrac{{2a{t_1}{t_2}}}{{({t_2} + {t_1})}} …(4)
Now in the question it is said that the locus of the mid points of chords of the parabola touches the parabola y2=4bx{y^2} = 4bx .
We know if a chord touches a parabola at a point only, then it must be a tangent to the parabola.
Condition for a line of slope m : y=mx+cy = mx + c to be a tangent to parabola y2=4bx{y^2} = 4bx is c=bmc = \dfrac{b}{m} .

From equation (4)
m=2(t2+t1)m = \dfrac{2}{{({t_2} + {t_1})}} & c=2at1t2(t1+t2)c = \dfrac{{2{a_{{t_1}}}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}}
Now according to the condition stated.
c=bmc = \dfrac{b}{m}
2at1t2(t1+t2)=b(t2+t1)2\dfrac{{2a{t_1}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}} = \dfrac{{b({t_2} + {t_1})}}{2}
4at1t2=b((t1+t2)24a{t_1}{t_2} = b({\left( {{t_1} + {t_2}} \right)^2}
Now using equation (2) &(3).
4a(k22a2ha)=b(k2a2)4a\left( {\dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}} \right) = b\left( {\dfrac{{{k^2}}}{{{a^2}}}} \right)
Now manipulating the equation to get desired answer,
4a(k22ah2a2)=bk2a2 2ak24a2h=bk2 k2(2ab)=4a2h \begin{gathered} 4a\left( {\dfrac{{{k^2} - 2ah}}{{2{a^2}}}} \right) = \dfrac{{b{k^2}}}{{{a^2}}} \\\ 2a{k^2} - 4{a^2}h = b{k^2} \\\ {k^2}(2a - b) = 4{a^2}h \\\ \end{gathered}
Now replace (h,k)(h,k) with (x,y)(x,y)
Then,
y2(2ab)=4a2x{y^2}(2a - b) = 4{a^2}x
Hence, it’s proved that the locus of the midpoint of chords of the parabola y2=4ax{y^2} = 4ax which touches the parabola y2=4bx{y^2} = 4bx isy2(2ab)=4a2x{y^2}\left( {2a - b} \right) = 4{a^2}x.

Note: Equation of a tangent to a parabola passing through point (h,k)(h,k) can be given as yk=2a(x+h)yk = 2a(x + h) which can be directly used to solve it.